A new equation on the Calabi-Yau metrics in low dimensions

被引:0
作者
Egorov D.V. [1 ]
机构
[1] North-Eastern Federal University, Yakutsk
基金
俄罗斯基础研究基金会;
关键词
Calabi-Yau manifold; Monge-Ampère equation; symplectic structure;
D O I
10.1134/S0037446611040094
中图分类号
学科分类号
摘要
We obtain an equation on the metrics of compact Kähler manifolds in dimensions 2 and 3, whose solutions are Calabi-Yau metrics. This equation differs from the Monge-Ampère equation considered by Calabi [1] and Yau [2]. © 2011 Pleiades Publishing, Ltd.
引用
收藏
页码:651 / 654
页数:3
相关论文
共 17 条
  • [11] Delanoe P., Sur l'analogue presque-complexe de l'equation de Calabi-Yau, Osaka J. Math., 33, pp. 829-846, (1996)
  • [12] Wang Hongyu, Zhu Peng, On a generalized Calabi-Yau equation
  • [13] Donaldson S.K., Two-forms on four-manifolds and elliptic equations
  • [14] Weinkove B., The Calabi-Yau equation on almost Kähler four-manifolds, J. Differential Geom., 76, 2, pp. 317-349, (2007)
  • [15] Tosatti V., Weinkove B., Yau S.-T., Taming symplectic forms and the Calabi-Yau equation, Proc. London Math. Soc., 97, 2, pp. 401-424, (2008)
  • [16] Tosatti V., Weinkove B., The Calabi-Yau equation, symplectic forms and almost complex structures
  • [17] Fine J., Panov D., Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle