A new equation on the Calabi-Yau metrics in low dimensions

被引:0
作者
Egorov D.V. [1 ]
机构
[1] North-Eastern Federal University, Yakutsk
基金
俄罗斯基础研究基金会;
关键词
Calabi-Yau manifold; Monge-Ampère equation; symplectic structure;
D O I
10.1134/S0037446611040094
中图分类号
学科分类号
摘要
We obtain an equation on the metrics of compact Kähler manifolds in dimensions 2 and 3, whose solutions are Calabi-Yau metrics. This equation differs from the Monge-Ampère equation considered by Calabi [1] and Yau [2]. © 2011 Pleiades Publishing, Ltd.
引用
收藏
页码:651 / 654
页数:3
相关论文
共 17 条
  • [1] Calabi E., On Kähler manifolds with vanishing canonical class, Algebraic Geometry and Topology (Symp. In Honor of S. Lefschetz), pp. 78-89, (1957)
  • [2] Yau S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31, pp. 339-411, (1978)
  • [3] Joyce D., Compact Manifolds with Special Holonomy, (2000)
  • [4] Ehresmann C., Libermann P., Sur le problème d'équivalence des formes différentielles extérieures quadratiques, C. R. Acad. Sci. Paris, 229, pp. 697-698, (1949)
  • [5] Libermann P., Sur les structures presque complexes et autres structures infinitésimales régulières, Bull. Soc. Math. France, 83, pp. 195-224, (1955)
  • [6] Tseng Li-Sheng, Yau S.-T., Cohomology and Hodge theory on symplectic manifolds. I
  • [7] Weil A., Introduction à L'Étude Des variété Kahlériennes, (1958)
  • [8] Hitchin N., The geometry of three-forms in six and seven dimensions
  • [9] Hitchin N., Stable forms and special metrics
  • [10] Moser J., On the volume elements of a manifold, Trans. Amer. Math. Soc., 120, pp. 286-294, (1965)