The influence of some primary subgroups on the structure of finite groups

被引:1
作者
Kang P. [1 ]
机构
[1] Department of Mathematics, Tianjin Polytechnic University, Tianjin
关键词
c-Normal subgroup; Saturated formation; ss-Quasinormal subgroup;
D O I
10.1007/s40879-017-0196-7
中图分类号
学科分类号
摘要
Suppose that G is a finite group and H is a subgroup of G. H is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that G= HB and H permutes with every Sylow subgroup of B; H is said to be c-normal in G if G has a normal subgroup T such that G= HT and [InlineEquation not available: see fulltext.], where HG is the normal core of H in G. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1 < | D| < | P| and study the structure of G under the assumption that every subgroup H of P with | H| = | D| is either ss-quasinormal or c-normal in G. Some recent results are generalized and unified. © 2017, Springer International Publishing AG.
引用
收藏
页码:603 / 611
页数:8
相关论文
共 20 条
[1]  
Chao F., Guo X., Finite groups with some ss-quasinormal and c-normal subgroups, Front. Math. China, 5, 2, pp. 211-219, (2010)
[2]  
Deskins W.E., On quasinormal subgroups of finite groups, Math. Z., 82, pp. 125-132, (1963)
[3]  
Guo X., Shum K.P., On c -normal maximal and minimal subgroups of Sylow p -subgroups of finite groups, Arch. Math. (Basel), 80, 6, pp. 561-569, (2003)
[4]  
Huppert B., Endliche Gruppen. Vol. I. Die Grundlehren der Mathematischen Wissenschaften, 134, (1967)
[5]  
Huppert B., Blackburn N., Finite Groups. Vol. III. Grundlehren der Mathematischen Wissenschaften, 243, (1982)
[6]  
Jaraden J.J., Skiba A.N., On c -normal subgroups of finite groups, Comm. Algebra, 35, 11, pp. 3776-3788, (2007)
[7]  
Kegel O.H., Sylow Gruppen und subnormalteiler endlicher Gruppen, Math. Z., 78, pp. 205-221, (1962)
[8]  
Li D., Guo X., The influence of c-normality of subgroups on structure of finite groups II, Comm. Algebra, 26, 6, pp. 1913-1922, (1998)
[9]  
Li D., Guo X., The influence of c-normality of subgroups on structure of finite groups, J. Pure Appl. Algebra, 150, 1, pp. 53-60, (2000)
[10]  
Li S., Shen Z., Kong X., On SS -quasinormal subgroups of finite subgroups, Comm. Algebra, 36, 12, pp. 4436-4447, (2008)