A computational geometry approach for linear and non linear discriminant analysis

被引:0
|
作者
Giancarlo Ragozini
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Statistica
来源
Computational Statistics | 2000年 / 15卷
关键词
Discriminant Analysis; Non linear structure; Voronoi Tessellation;
D O I
暂无
中图分类号
学科分类号
摘要
A geometric discriminant criterion is a rule that allows to assign a new observation to preexisting groups. In this paper we propose a new method that works for data sets in two and three dimensions. It is totally data driven, without any model or density function assumptions, unlike usual the parametric approaches. In order to set up the procedure we exploit the geometrical properties of the Voronoi tessellation. The proposed discriminant analysis induces a space partition, that allows to deal efficiently with non linearly separable or non convex population structures. We analize the computational cost of the proposed procedure and the topological conditions concerning the group-conditional density functions that optimize the procedure performance. Because of its geometric properties, the method can be also usefully applied in statistical pattern recognition.
引用
收藏
页码:115 / 125
页数:10
相关论文
共 50 条
  • [41] On Application of Principal Component Analysis and Linear Discriminant Analysis to Control Driver's Behavior
    Kulikov, D. S.
    Mokeyev, V. V.
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2016,
  • [42] Generalized Gini linear and quadratic discriminant analyses
    Charles Condevaux
    Stéphane Mussard
    Téa Ouraga
    Guillaume Zambrano
    METRON, 2020, 78 : 219 - 236
  • [43] Generalized Gini linear and quadratic discriminant analyses
    Condevaux, Charles
    Mussard, Stephane
    Ouraga, Tea
    Zambrano, Guillaume
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2020, 78 (02): : 219 - 236
  • [44] Comparison of Linear, Quadratic and Flexible Discriminant Analysis by Using Generated and Real Data
    Ozturk, Ahmet
    Ozdamar, Kazim
    ERCIYES MEDICAL JOURNAL, 2008, 30 (04) : 266 - 277
  • [45] Distance-based linear discriminant analysis for interval-valued data
    Ramos-Guajardo, Ana B.
    Grzegorzewski, Przemyslaw
    INFORMATION SCIENCES, 2016, 372 : 591 - 607
  • [46] Asymptotic results for expected probability of misclassifications in linear discriminant analysis with repeated measurements
    Ngailo, Edward Kanuti
    Ngaruye, Innocent
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (06) : 1942 - 1963
  • [47] BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS FOR ACTUAL ERROR RATE IN LINEAR DISCRIMINANT ANALYSIS
    Atakan, Cemal
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (03): : 357 - 372
  • [48] Classification of Hand Motions Using Linear Discriminant Analysis and Support Vector Machine
    Zeng, Haibin
    Li, Ke
    Tian, Xincheng
    Wei, Na
    Song, Rui
    Zhou, Lelai
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 2353 - 2356
  • [49] Block linear discriminant analysis for visual tensor objects with frequency or time information
    Li, Xutao
    Ng, Michael K.
    Ye, Yunming
    Wang, Eric Ke
    Xu, Xiaofei
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 49 : 38 - 46
  • [50] Uncorrelated linear discriminant analysis (ULDA): A powerful tool for exploration of metabolomics data
    Yuan, Dalin
    Liang, Yizeng
    Yi, Lunzhao
    Xu, Qjngsong
    Kvalheim, Olav M.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2008, 93 (01) : 70 - 79