Convergence of general linear methods on differential-algebraic systems of index 3

被引:0
作者
Stefan Schneider
机构
[1] Université de Genève,Département de Mathématiques
来源
BIT Numerical Mathematics | 1997年 / 37卷
关键词
65L06; General linear methods; stability matrix; differential-algebraic equations;
D O I
暂无
中图分类号
学科分类号
摘要
Many numerical methods used to solve ordinary differential equations or differential-algebraic equations can be written as general linear methods. The purpose of this paper is to extend the known convergence results for Runge-Kutta and linear multistep methods to a large class of new promising numerical schemes. The theoretical results are illustrated by some numerical experiments.
引用
收藏
页码:424 / 441
页数:17
相关论文
共 16 条
  • [1] Bickart T. A.(1977)An efficient solution process for implicit Runge-Kutta methods SIAM J. Numer. Anal. 14 1022-1027
  • [2] Burrage K.(1980)An implementation of singly-implicit Runge-Kutta methods BIT 20 326-340
  • [3] Butcher J. C.(1984)The convergence of variable step size, variable formula multistep methods SIAM J. Numer. Anal. 21 512-534
  • [4] Chipman F. H.(1969)La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation R.I.R.O. R-3 17-44
  • [5] Crouzeix M.(1983)Stability of multistep methods on variable grids Numer. Math. 42 359-377
  • [6] Lisbona F. J.(1990)Local error estimation for multistep collocation methods BIT 30 126-144
  • [7] Guillou A.(1989)The stability function for multistep collocation methods Numer. Math. 57 779-787
  • [8] Soule J. L.(1993)Integraton of stiff mechanical systems by Runge-Kutta methods ZAMP 44 1022-1053
  • [9] Griegorief R. D.(1993)Numerical experiments with a multistep Radau method BIT 33 332-350
  • [10] Lie I.(1993)Convergence results for general linear methods on singular perturbation problems BIT 33 670-686