Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods

被引:0
|
作者
T. Monovasilis
Z. Kalogiratou
T. E. Simos
机构
[1] Institute of Western Macedonia at Kastoria,Department of International Trade, Technological Educational
[2] Technological Educational Institution of Western Macedonia at Kastoria,Department of Computer Science and Technology
[3] College of Sciences,Department of Mathematics
[4] King Saud University,Laboratory of Computational Sciences, Department of Informatics and Telecommunications, Faculty of Economy, Management and Informatics
[5] University of Peloponnese,undefined
来源
关键词
65L05; Partitioned Runge–Kutta methods; Runge–Kutta–Nyström methods; symplectic methods; Hamiltonian systems; trigonometrical fitting;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we give the general framework for constructing trigonometrically fitted symplectic Runge–Kutta–Nyström (RKN) methods from symplectic trigonometrically fitted partitioned Runge–Kutta (PRK) methods. We construct RKN methods from PRK methods with up to five stages and fourth algebraic order. Numerical results are given for the two-body problem and the perturbed two-body problem.
引用
收藏
页码:2271 / 2285
页数:14
相关论文
共 50 条
  • [1] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [2] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [3] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [4] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [5] Symplectic trigonometrically fitted partitioned Runge-Kutta methods
    Kalogiratou, Z.
    PHYSICS LETTERS A, 2007, 370 (01) : 1 - 7
  • [6] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [7] Functionally fitted Runge-Kutta-Nyström methods
    N. S. Hoang
    R. B. Sidje
    BIT Numerical Mathematics, 2016, 56 : 129 - 150
  • [8] Implicit symmetric and symplectic exponentially fitted modified Runge–Kutta–Nyström methods for solving oscillatory problems
    Bing Zhen Chen
    Wen Juan Zhai
    Journal of Inequalities and Applications, 2018
  • [9] A class of implicit symmetric symplectic and exponentially fitted Runge–Kutta–Nyström methods for solving oscillatory problems
    Huai Yuan Zhai
    Wen Juan Zhai
    Bing Zhen Chen
    Advances in Difference Equations, 2018
  • [10] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115