Relativistic Approach to the Hydrogen Atom in a Minimal Length Scenario

被引:0
作者
Ronald Oliveira Francisco
Thiago Luiz Antonacci Oakes
Júlio César Fabris
José Alexandre Nogueira
机构
[1] Universidade Federal do Espírito Santo,Departamento de Física
来源
Brazilian Journal of Physics | 2014年 / 44卷
关键词
Minimal length; Lorentz-covariant algebra; Dirac equation; Hydrogen atom;
D O I
暂无
中图分类号
学科分类号
摘要
We show that relativistic contributions to the ground-state energy of the hydrogen atom from a minimal length introduced by a Lorentz-covariant algebra are more important than non-relativistic contributions; the non-relativistic approach is therefore unsuitable. We compare our result with experimental data to estimate an upper bound of the order 10−20m for the minimal length.
引用
收藏
页码:271 / 277
页数:6
相关论文
共 79 条
[1]  
Kragh H((2012))Werner Heisenberg and the search for a smallest length Rewe d’Histoire des Sci. 8 401-002
[2]  
Hossenfelder S((1995))Heisenberg’s lattice world: the 1930 theory sketch Am. J. Phys. 63 595-003
[3]  
Snyder HS((2013))Minimal length scale scenarios for quantum gravity Living. Rev. Rel. 16 2-106
[4]  
Battisti MV((1947))Quantized space-time Phys. Rev. 71 38-101
[5]  
Meljanac S((2009))Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry Phys. Rev. 79 067505-104
[6]  
Arkani-Hamed N((1998))The hierarchy problem and new dimensions at a millimeter Phys. Lett. B 429 263-017
[7]  
Dimopoulos S((2001))Bounds on universal extra dimensions Phys. Rev. D 64 035-514
[8]  
Dvali G((2003))Signatures in Planck regime Phys. Lett. B 575 85-0113
[9]  
Appelquist T((2008))Universality of quantum gravity correction Phys. Rev. Lett. 101 221301-001
[10]  
Cheng HC((2002))Short distance versus long distance physics: the classical limit of the minimal length uncertainty relation Phys. Rev. D 66 026-undefined