Characterization of a class of embeddings for function spaces with Muckenhoupt weights

被引:0
作者
Martin Meyries
Mark Veraar
机构
[1] Martin-Luther-Universität Halle-Wittenberg,Institut für Mathematik
[2] Delft University of Technology,Delft Institute of Applied Mathematics
来源
Archiv der Mathematik | 2014年 / 103卷
关键词
Sobolev embeddings; Jawerth–Franke embeddings; Muckenhoupt weights; Sobolev spaces; Slobodetskii spaces; Bessel-potential spaces; Triebel–Lizorkin spaces; Besov spaces; Vector-valued function spaces; 46E35; 46E40;
D O I
暂无
中图分类号
学科分类号
摘要
For function spaces equipped with Muckenhoupt weights, the validity of continuous Sobolev embeddings in case p0≤p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p_0 \leq p_1}$$\end{document} is characterized. Extensions to Jawerth–Franke embeddings, vector-valued spaces, and examples involving some prominent weights are also provided.
引用
收藏
页码:435 / 449
页数:14
相关论文
共 50 条
  • [31] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Mitsuo Izuki
    Toru Nogayama
    Takahiro Noi
    Yoshihiro Sawano
    Constructive Approximation, 2023, 57 : 161 - 234
  • [32] Gelfand and Kolmogorov numbers of Sobolev embeddings of weighted function spaces
    Zhang, Shun
    Fang, Gensun
    JOURNAL OF COMPLEXITY, 2012, 28 (02) : 209 - 223
  • [33] A new characterization of the Muckenhoupt Ap weights through an extension of the Lorentz-Shimogaki theorem
    Lerner, Andrei K.
    Perez, Carlos
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) : 2697 - 2722
  • [34] EMBEDDINGS AND REGULARITY OF POTENTIALS IN GRAND VARIABLE EXPONENT FUNCTION SPACES
    Edmunds, David E.
    Makharadze, Dali
    Meskhi, Alexander
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 309 - 314
  • [35] Wavelet Characterization of Local Muckenhoupt Weighted Sobolev Spaces with Variable Exponents
    Izuki, Mitsuo
    Nogayama, Toru
    Noi, Takahiro
    Sawano, Yoshihiro
    CONSTRUCTIVE APPROXIMATION, 2023, 57 (01) : 161 - 234
  • [36] Muckenhoupt weights and Lindelof theorem for harmonic mappings
    Kalaj, David
    ADVANCES IN MATHEMATICS, 2015, 280 : 301 - 321
  • [37] Embeddings in Grand Variable Exponent Function Spaces
    David E. Edmunds
    Vakhtang Kokilashvili
    Alexander Meskhi
    Results in Mathematics, 2021, 76
  • [38] Sharp embedding results for spaces of smooth functions with power weights
    Meyries, Martin
    Veraar, Mark
    STUDIA MATHEMATICA, 2012, 208 (03) : 257 - 293
  • [39] Mixed modulus of smoothness with Muckenhoupt weights and approximation by angle
    Akgun, Ramazan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (02) : 330 - 351
  • [40] UNIFORM APPROXIMATION OF MUCKENHOUPT WEIGHTS ON FRACTALS BY SIMPLE FUNCTIONS
    Carena, Marilina
    Toschi, Marisa
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (01): : 57 - 66