Polyboxes, Cube Tilings and Rigidity

被引:0
作者
Andrzej P. Kisielewicz
Krzysztof Przesławski
机构
[1] Uniwersytet Zielonogórski,Wydział Matematyki, Informatyki i Ekonometrii
来源
Discrete & Computational Geometry | 2008年 / 40卷
关键词
Box; Dichotomous boxes; Polybox; Additive mapping; Index; Binary code; Word; Genome; Cube tiling; Rigidity;
D O I
暂无
中图分类号
学科分类号
摘要
A non-empty subset A of X=X1×⋅⋅⋅×Xd is a (proper) box if A=A1×⋅⋅⋅×Ad and Ai⊂Xi for each i. Suppose that for each pair of boxes A, B and each i, one can only know which of the three states takes place: Ai=Bi, Ai=Xi∖Bi, Ai∉{Bi,Xi∖Bi}. Let F and G be two systems of disjoint boxes. Can one decide whether ∪F=∪G? In general, the answer is ‘no’, but as is shown in the paper, it is ‘yes’ if both systems consist of pairwise dichotomous boxes. (Boxes A, B are dichotomous if there is i such that Ai=Xi∖Bi.) Several criteria that enable to compare such systems are collected. The paper includes also rigidity results, which say what assumptions have to be imposed on F to ensure that ∪F=∪G implies F=G. As an application, the rigidity conjecture for 2-extremal cube tilings of Lagarias and Shor is verified.
引用
收藏
页码:1 / 30
页数:29
相关论文
共 18 条
[1]  
Alon N.(2002)On partitions of discrete boxes Discrete Math. 257 255-258
[2]  
Bohman T.(2004)Minimal partitions of a box into boxes Combinatorica 24 605-614
[3]  
Holzman R.(1999)Finite algebras of finite complexity Discrete Math. 207 89-135
[4]  
Kleitman D.J.(1930)Über die lückenlose Erfüllung des Raumes Würfeln J. Reine Angew. Math. 163 231-248
[5]  
Grytczuk J.(1937)Ein Satz über die lückenlose Erfüllung des 5- und 6-dimensionalen Raumes mit Würfeln J. Reine Angew. Math. 177 61-64
[6]  
Kisielewicz A.P.(1992)Keller’s cube-tiling conjecture is false in high dimensions Bull. Am. Math. Soc. 27 279-287
[7]  
Przesławski K.(1994)Cube tilings and nonlinear codes Discrete Comput. Geom. 11 359-391
[8]  
Kearnes K.A.(2000)A cube tiling of dimension eight with no face sharing Discrete Comput. Geom. 28 275-279
[9]  
Kiss E.W.(1940)Über lückenlose Ausfüllung des Math. Z. 46 1-26
[10]  
Keller O.-H.(1940)-dimensionalen Raumes durch kongruente Würfel I Math. Z. 46 161-180