Inertial manifolds and linear multi-step methods

被引:0
|
作者
Tony Shardlow
机构
[1] Stanford University,Scientific Computing and Computational Mathematics
来源
Numerical Algorithms | 1997年 / 14卷
关键词
inertial manifolds; linear multi-step methods; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the existence and C1 convergence of an inertial manifold for a strongly A(α) stable, pth order, p≧1, linear multi-step method approximating a sectorial evolution equation that satisfies a gap condition. This inertial manifold gives rise to a one-step method that C1 approximates the inertial form of the evolution equation and yields further approximation properties of the multi-step method.
引用
收藏
页码:189 / 209
页数:20
相关论文
共 50 条
  • [1] Inertial manifolds and linear multi-step methods
    Shardlow, T
    NUMERICAL ALGORITHMS, 1997, 14 (1-3) : 189 - 209
  • [2] Solving monotone inclusions with linear multi-step methods
    Pennanen, T
    Svaiter, BF
    MATHEMATICAL PROGRAMMING, 2003, 96 (03) : 469 - 487
  • [3] Solving monotone inclusions with linear multi-step methods
    Teemu Pennanen
    B. F. Svaiter
    Mathematical Programming, 2003, 96 : 469 - 487
  • [4] On greedy multi-step inertial randomized Kaczmarz method for solving linear systems
    Su, Yansheng
    Han, Deren
    Zeng, Yun
    Xie, Jiaxin
    CALCOLO, 2024, 61 (04)
  • [5] Exact A(α)-Stability Angles for Fractional Linear Multi-step Methods
    Nasir, Haniffa M.
    Al-Hasani, Khadija
    IFAC PAPERSONLINE, 2024, 58 (12): : 78 - 82
  • [6] Higher-order fractional linear multi-step methods
    Marasi, H. R.
    Derakhshan, M. H.
    Joujehi, A. Soltani
    Kumar, Pushpendra
    PHYSICA SCRIPTA, 2023, 98 (02)
  • [7] Multi-step methods for equations
    Kumar S.
    Sharma J.R.
    Argyros I.K.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1193 - 1215
  • [8] Conjugate symplecticity of second-order linear multi-step methods
    Feng, Quan-Dong
    Jiao, Yan-Dong
    Tang, Yi-Fa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 203 (01) : 6 - 14
  • [9] Improved linear multi-step methods for stochastic ordinary differential equations
    Buckwar, Evelyn
    Winkler, Renate
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) : 912 - 922
  • [10] Alternated and multi-step inertial approximation methods for solving convex bilevel optimization problems
    Duan, Peichao
    Zhang, Yiqun
    OPTIMIZATION, 2023, 72 (10) : 2517 - 2545