Symmetric Set Coloring of Signed Graphs

被引:0
作者
Chiara Cappello
Eckhard Steffen
机构
[1] Paderborn University,Department of Mathematics and NRW Forschungskolleg Gestaltung von flexiblen Arbeitswelten
[2] Paderborn University,Department of Mathematics
来源
Annals of Combinatorics | 2023年 / 27卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
There are many concepts of signed graph coloring which are defined by assigning colors to the vertices of the graphs. These concepts usually differ in the number of self-inverse colors used. We introduce a unifying concept for this kind of coloring by assigning elements from symmetric sets to the vertices of the signed graphs. In the first part of the paper, we study colorings with elements from symmetric sets where the number of self-inverse elements is fixed. We prove a Brooks’-type theorem and upper bounds for the corresponding chromatic numbers in terms of the chromatic number of the underlying graph. These results are used in the second part where we introduce the symset-chromatic number χsym(G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\mathrm{sym}(G,\sigma )$$\end{document} of a signed graph (G,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G,\sigma )$$\end{document}. We show that the symset-chromatic number gives the minimum partition of a signed graph into independent sets and non-bipartite antibalanced subgraphs. In particular, χsym(G,σ)≤χ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\mathrm{sym}(G,\sigma ) \le \chi (G)$$\end{document}. In the final section we show that these colorings can also be formalized as DP-colorings.
引用
收藏
页码:211 / 227
页数:16
相关论文
共 20 条
  • [1] Bernshteĭn AY(2017)On DP-coloring of graphs and multigraphs Sibirsk. Mat. Zh. 58 36-47
  • [2] Kostochka AV(1941)On colouring the nodes of a network Mathematical Proceedings of the Cambridge Philosophical Society 37 194-197
  • [3] Pron SP(2018)Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 J. Combin. Theory Ser. B 129 38-54
  • [4] Brooks RL(1953)On the notion of balance of a signed graph Michigan Math. J. 2 143-146
  • [5] Dvořák Z(2016)The chromatic spectrum of signed graphs Discrete Math. 339 2660-2663
  • [6] Postle L(2018)Circular coloring of signed graphs J. Graph Theory 87 135-148
  • [7] Harary F(1975)Three short proofs in graph theory Journal of Combinatorial Theory, Series B 19 269-271
  • [8] Kang Y(2021)Circular chromatic number of signed graphs The Electronic Journal of Combinatorics 28 06-891
  • [9] Steffen E(2017)Degree choosable signed graphs Discrete Math. 340 882-52
  • [10] Kang Y(2021)Signed graph coloring Coloring permutation-gain graphs. Contrib. Disc. Math. 16 47-228