Existence of solutions for some nonautonomous partial functional differential equations with state-dependent delay

被引:0
作者
Kpoumiè M.E.-K. [1 ]
Nsangou A.H.G. [2 ]
Ndambomve P. [3 ]
Zabsonre I. [4 ]
Mboutngam S. [2 ]
机构
[1] Departement de Mathematiques Appliquées et Informatique, Université de Ngaoundéré, Ècole de Géologie et Exploitation Miniére, B.P. 115, Meiganga
[2] Departement de Mathematiques, Université de Maroua, Ècole Normale Supérieure, B.P. 55, Maroua
[3] Faculty of Science, Department of Mathematics, University of Buea, P.O. Box 63, Buea
[4] Département de Mathématiques, Université de Ouaga 1 Pr Joseph KI-ZERBO, Unité de Recherche et de Formation en Sciences Exactes et Appliquées, B.P.7021, 03, Ouagadougou
关键词
Mild solutions; Nonautonomous equations; Nondensely defined operator; State-dependent delay;
D O I
10.1007/s40324-019-00206-w
中图分类号
学科分类号
摘要
The aim of this work is to prove the existence of mild solutions for some nondensely nonautonomous partial functional differential equations with state-dependent delay in Banach spaces. We assume that the linear part is not necessarily densely defined and generates an evolution family. Our approach is based on a nonlinear alternative of Leray–Schauder type and nonautonomous evolution family with nondensely domain. We propose a reaction diffusion equation with state-dependent delay to illustrate the obtained result. © 2019, Sociedad Española de Matemática Aplicada.
引用
收藏
页码:107 / 118
页数:11
相关论文
共 37 条
  • [1] Adimy M., Ezzinbi K., A class of linear partial neutral functional differential equations with nondense domain, J. Differen. Equ., 147, pp. 108-127, (1998)
  • [2] Aiello W.G., Freedman H.I., Wu J., Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52, 3, pp. 855-869, (1992)
  • [3] Ait Dads E., Ezzinbi K., Boundedness and almost periodicity for some state-dependent delay differential equations, Electron. J. Differ. Equ., 67, (2002)
  • [4] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander B., Schlotterbeck U., One-Parameter Semigroup of Positive Operators, (1984)
  • [5] Arino O., Boushaba K., Boussouar A., A mathematical model of the dynamics of the phytoplankton-nutrient system. Spatial heterogeneity in ecological models (Alcalá de Henares, 1998), Nonlinear Anal. RWA, 1, 1, pp. 69-87, (2000)
  • [6] Belmekki M., Benchohra M., Ezzinbi K., Existence results for some partial functional differential equations with state-dependent delay, Appl. Math. Lett., 24, pp. 1810-1816, (2011)
  • [7] Canada A., Drabek P., Fonda A., Handbook of Ordinary Differential Equations, 3, (2006)
  • [8] Cao Y., Fan J., Gard T.C., The effects of state-dependent time delay on a stage-structured population growth model, Nonlinear Anal., 19, 2, pp. 95-105, (1992)
  • [9] Da Prato G., Sinestrari E., Differential operators with nondense domains, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 14, pp. 285-344, (1987)
  • [10] Domoshnitsky A., Drakhlin M., Litsyn E., On equations with delay depending on solution, Nonlinear Anal., 49, 5, pp. 689-701, (2002)