Let G be a simple algebraic group over an algebraically closed field, and let C be a noncentral conjugacy class of G. The covering number cn(G,C) is defined to be the minimal k such that G = Ck, where Ck = {c1c2⋯ck : ci ∈ C}. We prove that cn(G,C)≤cdimGdimC\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$cn(G,C) \le c \frac {\dim G}{\dim C}$\end{document}, where c is an explicit constant (at most 120). Some consequences on the width and generation of simple algebraic groups are given.
机构:
Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
Herzog, Marcel
Kaplan, Gil
论文数: 0引用数: 0
h-index: 0
机构:
Acad Coll Tel Aviv Yafo, Sch Comp Sci, IL-60183 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
Kaplan, Gil
Lev, Arieh
论文数: 0引用数: 0
h-index: 0
机构:
Acad Coll Tel Aviv Yafo, Sch Comp Sci, IL-60183 Tel Aviv, IsraelTel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
机构:
Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier,Dept Math, F-38402 St Martin Dheres, FranceUniv Grenoble 1, CNRS, UMR 5582, Inst Fourier,Dept Math, F-38402 St Martin Dheres, France
机构:
Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Quinta Da Torre, Caparica, PortugalUniv Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, Quinta Da Torre, Caparica, Portugal