On Solutions of the Fokker–Planck Equations

被引:0
|
作者
Mashtakov A. [1 ]
Yumaguzhin V. [1 ]
Yumaguzhina V. [1 ]
机构
[1] Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky
关键词
35A30; 53A55; 58D27; 58J70; 83C05; 83C15; differential invariant; equivalence problem; jet bundle; second order partial differential operator;
D O I
10.1007/s10958-023-06742-1
中图分类号
学科分类号
摘要
In this paper, we find necessary and sufficient conditions for existence of a transformation of independent spatial variables that transforms the Fokker–Planck equation to an equation with constant coefficients. Using these conditions, we calculate explicit solutions for two-dimensional Fokker–Planck equations. Our motivation comes from applications in image processing, where the Fokker–Planck equation typically describes blurring processes. © 2023, Springer Nature Switzerland AG.
引用
收藏
页码:300 / 309
页数:9
相关论文
共 50 条
  • [21] GLOBAL CLASSICAL SOLUTIONS FOR QUANTUM KINETIC FOKKER-PLANCK EQUATIONS
    罗兰
    张新平
    Acta Mathematica Scientia, 2015, 35 (01) : 140 - 156
  • [22] DIFFERENTIABILITY OF SOLUTIONS OF STATIONARY FOKKER PLANCK KOLMOGOROV EQUATIONS WITH RESPECT TO A PARAMETER
    Bogachev, Vladimir I.
    Shaposhnikov, Stanislav V.
    Veretennikov, Alexander Yu.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3519 - 3543
  • [23] On Convergence to Stationary Distributions for Solutions of Nonlinear Fokker–Planck–Kolmogorov Equations
    Bogachev V.I.
    Röckner M.
    Shaposhnikov S.V.
    Journal of Mathematical Sciences, 2019, 242 (1) : 69 - 84
  • [24] The existence of mild and classical solutions for time fractional Fokker–Planck equations
    Li Peng
    Yong Zhou
    Monatshefte für Mathematik, 2022, 199 : 377 - 410
  • [25] Existence and uniqueness of solutions for Fokker-Planck equations on Hilbert spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (03) : 487 - 509
  • [26] EXACT-SOLUTIONS OF A CLASS OF NONLINEAR FOKKER-PLANCK EQUATIONS
    HONGLER, MO
    PHYSICS LETTERS A, 1979, 75 (1-2) : 3 - 4
  • [27] Existence, Stability and Regularity of Periodic Solutions for Nonlinear Fokker–Planck Equations
    Eric Luçon
    Christophe Poquet
    Journal of Dynamics and Differential Equations, 2024, 36 : 633 - 671
  • [28] Estimates for Solutions to Fokker-Planck-Kolmogorov Equations with Integrable Drifts
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 559 - 563
  • [29] Uniqueness for Solutions of Fokker-Planck Equations on Infinite Dimensional Spaces
    Bogachev, Vladimir
    Da Prato, Giuseppe
    Roeckner, Michael
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (06) : 925 - 939
  • [30] On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Popova, S. N.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 498 - 501