On Solutions of the Fokker–Planck Equations

被引:0
|
作者
Mashtakov A. [1 ]
Yumaguzhin V. [1 ]
Yumaguzhina V. [1 ]
机构
[1] Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky
关键词
35A30; 53A55; 58D27; 58J70; 83C05; 83C15; differential invariant; equivalence problem; jet bundle; second order partial differential operator;
D O I
10.1007/s10958-023-06742-1
中图分类号
学科分类号
摘要
In this paper, we find necessary and sufficient conditions for existence of a transformation of independent spatial variables that transforms the Fokker–Planck equation to an equation with constant coefficients. Using these conditions, we calculate explicit solutions for two-dimensional Fokker–Planck equations. Our motivation comes from applications in image processing, where the Fokker–Planck equation typically describes blurring processes. © 2023, Springer Nature Switzerland AG.
引用
收藏
页码:300 / 309
页数:9
相关论文
共 50 条
  • [1] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [2] Lp-solutions of Fokker-Planck equations
    Wei, Jinlong
    Liu, Bin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 110 - 124
  • [3] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [4] ON THE GAUSSIAN APPROXIMATION FOR SOLUTIONS OF FOKKER-PLANCK EQUATIONS
    KHARRASOV, MK
    ABDULLIN, AU
    DOKLADY AKADEMII NAUK, 1994, 335 (01) : 32 - 34
  • [5] Generalized solutions to nonlinear Fokker-Planck equations
    Barbu, Viorel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) : 2446 - 2471
  • [6] Integrability and continuity of solutions to Fokker–Planck–Kolmogorov equations
    V. I. Bogachev
    S. V. Shaposhnikov
    Doklady Mathematics, 2017, 96 : 583 - 586
  • [7] STEADY-STATE SOLUTIONS OF THE FOKKER-PLANCK EQUATIONS
    ZHENG, Q
    HAO, BL
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1987, 8 (02) : 153 - 166
  • [8] THE RECIPROCAL RELATION OF SOLUTIONS OF EINSTEIN-FOKKER-PLANCK EQUATIONS
    POLOVINKIN, AV
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOFIZIKA, 1991, 34 (08): : 884 - 890
  • [9] RESCALED OBJECTIVE SOLUTIONS OF FOKKER-PLANCK AND BOLTZMANN EQUATIONS
    Matthies, Karsten
    Theil, Florian
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1321 - 1348
  • [10] On Sobolev Classes Containing Solutions to Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    S. N. Popova
    S. V. Shaposhnikov
    Doklady Mathematics, 2018, 98 : 498 - 501