Efficient analysis of COVID-19 clinical data using machine learning models

被引:0
作者
Sarwan Ali
Yijing Zhou
Murray Patterson
机构
[1] Georgia State University,
来源
Medical & Biological Engineering & Computing | 2022年 / 60卷
关键词
COVID-19; Coronavirus; Clinical data; Classification; Feature selection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1881 / 1896
页数:15
相关论文
共 99 条
[1]  
Lundberg SM(2018)Explainable machine-learning predictions for the prevention of hypoxaemia during surgery Nat Biomed Eng 2 749-5839
[2]  
Nair B(2020)From local explanations to global understanding with explainable ai for trees Nat Mach Intell 2 2522-23
[3]  
Vavilala MS(2021)Predicting attributes of nodes using network structure ACM Trans Intell Syst Technol 12 1-228
[4]  
Horibe M(2020)Comparison of deep learning approaches to predict covid-19 infection Chaos, Solitons & Fractals 140 215-558
[5]  
Eisses MJ(2020)Combinatorial trace method for network immunization Information Sciences 519 348-505
[6]  
Adams T(2020)A multi-cascaded model with data augmentation for enhanced paraphrase detection in short texts Information Processing & Management 57 553-11
[7]  
Liston DE(2021)Robust representation and efficient feature selection allows for effective clustering of sars-cov-2 variants Algorithms 14 497-13
[8]  
Low DKW(2020)Machine learning methods accurately predict host specificity of coronaviruses based on spike sequences alone Biochemical and Biophysical Research Communications 533 26-13
[9]  
Newman SF(2021)Diagnosis of covid-19 using ct scan images and deep learning techniques Emergency radiology 28 1-123
[10]  
Kim J(2021)An open-source covid-19 ct dataset with automatic lung tissue classification for radiomics Bioengineering 8 1-1155