Noncompactness of Toeplitz operators between abstract Hardy spaces

被引:0
作者
Alexei Karlovich
机构
[1] Universidade Nova de Lisboa,Centro de Matemática e Aplicações (CMA) and Departamento de Matemática, Faculdade de Ciências e Tecnologia
来源
Advances in Operator Theory | 2021年 / 6卷
关键词
Abstract Hardy space; Toeplitz operator; Compactness; Pointwise multiplier; Primary 47B35; Secondary 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In the beginning of 1960s, Brown and Halmos proved that a Toeplitz operator T(a) is compact on the Hardy space H2=H[L2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^2=H[L^2]$$\end{document} over the unit circle T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} if and only if a=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=0$$\end{document} a.e. Recently, Leśnik [13] generalized this result to the setting of Toeplitz operators acting between abstract Hardy spaces H[X] and H[Y] built upon possibly different rearrangement-invariant Banach function spaces X and Y over T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} such that Y has nontrivial Boyd indices. We show that the general principle of noncompactness of nontrivial Toeplitz operators between abstract Hardy spaces H[X] and H[Y] remains true for much more general spaces X and Y. In particular, there are no nontrivial compact Toeplitz operators on the Hardy space H1=H[L1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1=H[L^1]$$\end{document}, although L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} has trivial Boyd indices.
引用
收藏
相关论文
共 12 条
[1]  
Janson S(1976)On functions with conditions on the mean oscillation Ark. Mat. 14 189-196
[2]  
Karlovich A(2019)The Brown–Halmos theorem for a pair of abstract Hardy spaces J. Math. Anal. Appl. 472 246-265
[3]  
Shargorodsky E(2013)Pointwise multipliers of Calderón-Lozanovskiĭ spaces Math. Nachr. 286 876-907
[4]  
Kolwicz P(2019)Toeplitz and Hankel operators between distinct Hardy spaces Studia Math. 249 163-192
[5]  
Leśnik K(1989)Generalized duality of some Banach function spaces Indag. Math. 51 323-338
[6]  
Maligranda L(1976)Bounded Toeplitz operators on Am. J. Math. 98 573-589
[7]  
Leśnik K(2006) and applications of the duality between Bull. Lond. Math. Soc. 38 143-155
[8]  
Maligranda L(1992) and the functions of bounded mean oscillation Ann. Inst. Fourier 42 875-889
[9]  
Persson LE(undefined)Fredholm theory of Toeplitz operators on the Hardy space undefined undefined undefined-undefined
[10]  
Stegenga DA(undefined)Notes on interpolation of Hardy spaces undefined undefined undefined-undefined