Location of Eigenvalues of Non-self-adjoint Discrete Dirac Operators

被引:0
作者
B. Cassano
O. O. Ibrogimov
D. Krejčiřík
F. Štampach
机构
[1] Università degli Studi di Bari,Department of Mathematics
[2] ETH Zürich,Institute for Theoretical Physics
[3] Czech Technical University in Prague,Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering
[4] Czech Technical University in Prague,Department of Applied Mathematics, Faculty of Information Technology
来源
Annales Henri Poincaré | 2020年 / 21卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We provide quantitative estimates on the location of eigenvalues of one-dimensional discrete Dirac operators with complex ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^p$$\end{document}-potentials for 1≤p≤∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p \le \infty $$\end{document}. As a corollary, subsets of the essential spectrum free of embedded eigenvalues are determined for small ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^1$$\end{document}-potential. Further possible improvements and sharpness of the obtained spectral bounds are also discussed.
引用
收藏
页码:2193 / 2217
页数:24
相关论文
共 43 条
[1]  
Abramov AA(2001)Bounds on complex eigenvalues and resonances J. Phys. A Math. Gen. 34 57-72
[2]  
Aslanyan A(1999)Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators Q. J. Math. Oxf. Ser. (2) 50 371-384
[3]  
Davies EB(2004)The discretized Schrödinger equation and simple models for semiconductor quantum wells Eur. J. Phys. 25 503-514
[4]  
Bairamov E(2011)Sparse one-dimensional discrete Dirac operators II: spectral properties J. Math. Phys. 52 073501, 21-388
[5]  
Çelebi AO(2014)Estimates on complex eigenvalues for Dirac operators on the half-line Integr. Equ. Oper. Theory 79 377-3018
[6]  
Boykin TB(2017)Eigenvalue bounds for Dirac and fractional Schrödinger operators with complex potentials J. Funct. Anal. 272 2987-736
[7]  
Klimeck G(2014)Eigenvalue estimates for non-selfadjoint Dirac operators on the real line Ann. Henri Poincaré 15 707-1778
[8]  
Carvalho SL(2018)Eigenvalues of one-dimensional non-self-adjoint Dirac operators and applications Lett. Math. Phys. 108 1757-269
[9]  
de Oliveira CR(2005)Spectral and localization properties for the one-dimensional Bernoulli discrete Dirac operator J. Math. Phys. 46 072105, 17-1485
[10]  
Prado RA(2014)On quantitative bounds on eigenvalues of a complex perturbation of a Dirac operator Integr. Equ. Oper. Theory 78 249-2472