The finite volume element method for a parameter identification problem

被引:0
|
作者
Zhiguang Xiong
Kang Deng
Zhusong Liu
Yanping Liu
Xiaocui Yan
机构
[1] Hunan University of Science and Technology,School of Mathematics and Computational Science
[2] Guangdong University of Technology,School of Computers
来源
Journal of Ambient Intelligence and Humanized Computing | 2015年 / 6卷
关键词
Control parameter; Parabolic partial differential equations; Finite volume element; Error estimate;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we use finite volume element method to solve a parameter identification problem of parabolic equations with overspecified-data. We provide the numerical scheme of the unknown function and control parameters and obtain the error estimates of approximate solution. The results of the numerical experiment are presented and are compared with the exact solution to confirm the good accuracy of the presented scheme.
引用
收藏
页码:533 / 539
页数:6
相关论文
共 50 条
  • [1] The finite volume element method for a parameter identification problem
    Xiong, Zhiguang
    Deng, Kang
    Liu, Zhusong
    Liu, Yanping
    Yan, Xiaocui
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2015, 6 (05) : 533 - 539
  • [2] The rheological parameter identification formulated as an inverse finite element problem
    Gavrus, A
    Massoni, E
    Chenot, JL
    INVERSE PROBLEMS IN ENGINEERING, 1999, 7 (01): : 1 - 41
  • [3] Analysis of a finite volume element method for the Stokes problem
    Alfio Quarteroni
    Ricardo Ruiz-Baier
    Numerische Mathematik, 2011, 118 : 737 - 764
  • [4] Analysis of a finite volume element method for the Stokes problem
    Quarteroni, Alfio
    Ruiz-Baier, Ricardo
    NUMERISCHE MATHEMATIK, 2011, 118 (04) : 737 - 764
  • [5] An analysis of finite volume element method for solving the Signorini problem
    Zhang, Tie
    Li, Zheng
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 830 - 841
  • [6] Mortar finite volume method with ADINI element for biharmonic problem
    Bi, CJ
    Li, LK
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (03) : 475 - 488
  • [7] Superconvergence of finite volume element method for a nonlinear elliptic problem
    Bi, Chunjia
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) : 220 - 233
  • [8] PARAMETER IDENTIFICATION IN AN INHOMOGENEOUS-MEDIUM WITH FINITE-ELEMENT METHOD
    YOON, YS
    YEH, WWG
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1976, 16 (04): : 217 - 226
  • [9] ON THE FINITE VOLUME ELEMENT METHOD
    CAI, ZQ
    NUMERISCHE MATHEMATIK, 1991, 58 (07) : 713 - 735
  • [10] Parameter identification of gradient enhanced damage models with the finite element method
    Mahnken, R
    Kuhl, E
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1999, 18 (05) : 819 - 835