Recursive computation of Feynman periods

被引:0
作者
Michael Borinsky
Oliver Schnetz
机构
[1] Institute for Theoretical Studies,
[2] ETH Zürich,undefined
[3] Department Mathematik,undefined
[4] Friedrich Alexander Universität,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Field Theories in Higher Dimensions; Differential and Algebraic Geometry; Renormalization and Regularization; Renormalization Group;
D O I
暂无
中图分类号
学科分类号
摘要
Feynman periods are Feynman integrals that do not depend on external kinematics. Their computation, which is necessary for many applications of quantum field theory, is greatly facilitated by graphical functions or the equivalent conformal four-point integrals. We describe a set of transformation rules that act on such functions and allow their recursive computation in arbitrary even dimensions. As a concrete example we compute all subdivergence-free Feynman periods in ϕ3 theory up to six loops and 561 of 607 Feynman periods at seven loops analytically. Our results support the conjectured existence of a coaction structure in quantum field theory and suggest that ϕ3 and ϕ4 theory share the same number content.
引用
收藏
相关论文
共 99 条
[1]  
Semenova TY(2019) 7 Eur. Phys. J. C 79 136-undefined
[2]  
Smirnov AV(1997)( Nuovo Cim. A 110 1435-undefined
[3]  
Smirnov VA(2021)) SIGMA 17 103-undefined
[4]  
Remiddi E(2014) 6 Commun. Num. Theor. Phys. 08 589-undefined
[5]  
Brown F(2018)3 Phys. Rev. D 97 461-undefined
[6]  
Schnetz O(2005)undefined Phys. Rev. Lett. 94 133-undefined
[7]  
Schnetz O(2003)undefined Nucl. Phys. B 662 168-undefined
[8]  
Britto R(2013)undefined JHEP 08 064-undefined
[9]  
Cachazo F(2017)undefined Phys. Rev. Lett. 119 519-undefined
[10]  
Feng B(2020)undefined Phys. Rev. D 101 453-undefined