Three Positive Solutions of the One-Dimensional Generalized Hénon Equation

被引:0
作者
Ryuji Kajikiya
机构
[1] Saga University,Department of Mathematics, Faculty of Science and Engineering
来源
Results in Mathematics | 2014年 / 66卷
关键词
Primary 34B15; 34B18; 35J20; Hénon equation; Emden–Fowler equation; least energy solution; multiple positive solutions; variational method;
D O I
暂无
中图分类号
学科分类号
摘要
We study the one-dimensional generalized Hénon equation under the Dirichlet boundary condition. It is known that there exist at least three positive solutions if the coefficient function is even. In this paper, without the assumption of evenness, we prove the existence of at least three positive solutions.
引用
收藏
页码:427 / 459
页数:32
相关论文
共 41 条
  • [1] Ambrosetti A.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
  • [2] Rabinowitz P.H.(1986)Remarks on sublinear elliptic equations Nonlinear Anal. 10 55-64
  • [3] Brezis H.(2004)Multiplicity results for the supercritical Hénon equation Adv. Nonlinear Stud. 4 453-467
  • [4] Oswald L.(2008)A note on the radial solutions for the supercritical Hénon equation J. Math. Anal. Appl. 341 720-728
  • [5] Badiale M.(2011)On the location of a peak point of a least energy solution for Hénon equation Discrete Contin. Dyn. Syst. 30 1055-1081
  • [6] Serra E.(2006)On the Hénon equation: asymptotic profile of ground states, I Ann. Inst. H. Poincaré Anal. Non Linéaire 23 803-828
  • [7] Barutello V.(2005)On the Hénon equation: Asymptotic profile of ground states, II J. Differ. Equ. 216 78-108
  • [8] Secchi S.(2008)Multiple solutions for a Hénon-like equation on the annulus J. Differ. Equ. 245 1507-1525
  • [9] Serra E.(2003)The asymptotic behaviour of the ground state solutions for Hénon equation J. Math. Anal. Appl. 278 1-17
  • [10] Byeon J.(2003)The symmetry of least-energy solutions for semilinear elliptic equations J. Differ. Equ. 187 240-268