Pattern formation of Schnakenberg model using trigonometric quadratic B-spline functions

被引:0
|
作者
Aysun Tok Onarcan
Nihat Adar
Idiris Dag
机构
[1] Eskisehir Osmangazi University,Department of Informatics
[2] Eskisehir Osmangazi University,Department of Computer Engineering
来源
Pramana | / 96卷
关键词
Reaction–diffusion systems; finite element; quadratic B-spline; Schnakenberg model; 02.70.Cn; 02.60.Cb; 52.35.Mw;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the design of a numerical method for the Schnakenberg model. The patterns are nicely captured by way of the parameter values of the Schnakenberg model. The spatial integration of the equation is achieved by using a finite element method setting up the trigonometric quadratic B-spline collocation method over the subelements of the problem domain. The Crank–Nicolson technique is employed to get fully integrated Schnakenberg model. Numerical examples are given to show the good agreement with the Schnakenberg patterns.
引用
收藏
相关论文
共 50 条
  • [22] Quadratic B-spline curve interpolation
    Cheng, FH
    Wang, XF
    Barsky, BA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 41 (1-2) : 39 - 50
  • [23] COMPARISON OF QUADRATIC B-SPLINE INTERPOLATORS
    LIM, TJ
    MACLEOD, MD
    ELECTRONICS LETTERS, 1995, 31 (05) : 339 - 341
  • [24] DIRECT SOLUTION OF NONLINEAR CONSTRAINED QUADRATIC OPTIMAL CONTROL PROBLEMS USING B-SPLINE FUNCTIONS
    Edrisi-Tabriz, Yousef
    Lakestani, Mehrdad
    KYBERNETIKA, 2015, 51 (01) : 81 - 98
  • [25] Collocation method using quadratic B-spline for the RLW equation
    Soliman, AA
    Raslan, KR
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 78 (03) : 399 - 412
  • [26] Projection of curves on B-spline surfaces using quadratic reparameterization
    Yang, Yi-Jun
    Zeng, Wei
    Zhang, Hui
    Yong, Jun-Hai
    Paul, Jean-Claude
    GRAPHICAL MODELS, 2010, 72 : 47 - 59
  • [27] Shape Modeling with a Cubic Trigonometric Beta B-Spline with Local Support Basis Functions
    Samreen, Shamaila
    Khan, Arslan Khalid
    Sarfraz, Muhammad
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (05)
  • [28] A Generalized Quasi Cubic Trigonometric Bernstein Basis Functions and Its B-Spline Form
    Fu, Yunyi
    Zhu, Yuanpeng
    MATHEMATICS, 2021, 9 (10)
  • [29] Optimal design of smoothing spline surface using B-spline functions
    Fujioka, H
    Kano, H
    Egerstedt, M
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 107 - 110
  • [30] VIBRATION OF SKEW PLATES BY USING B-SPLINE FUNCTIONS
    MIZUSAWA, T
    KAJITA, T
    NARUOKA, M
    JOURNAL OF SOUND AND VIBRATION, 1979, 62 (02) : 301 - 308