Positive Toeplitz operators from a harmonic Bergman–Besov space into another

被引:0
作者
Ömer Faruk Doğan
机构
[1] Tekirdağ Namık Kemal University,Department of Mathematics
来源
Banach Journal of Mathematical Analysis | 2022年 / 16卷
关键词
Toeplitz operator; Harmonic Bergman–Besov space; Schatten class; Carleson measure; Berezin transform; 47B35; 31B05;
D O I
暂无
中图分类号
学科分类号
摘要
We define positive Toeplitz operators between harmonic Bergman–Besov spaces bαp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^p_\alpha $$\end{document} on the unit ball of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^n$$\end{document} for the full ranges of parameters 0<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p<\infty $$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\mathbb {R}}$$\end{document}. We give characterizations of bounded and compact Toeplitz operators taking one harmonic Bergman–Besov space into another in terms of Carleson and vanishing Carleson measures. We also give characterizations for a positive Toeplitz operator on bα2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b^{2}_{\alpha }$$\end{document} to be a Schatten class operator Sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{p}$$\end{document} in terms of averaging functions and Berezin transforms for 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty $$\end{document}, α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in {\mathbb {R}}$$\end{document}. Our results extend those known for harmonic weighted Bergman spaces.
引用
收藏
相关论文
共 46 条
[1]  
Alpay D(2007)Toeplitz operators on Arveson and Dirichlet spaces Integral Equ. Oper. Theory 58 1-33
[2]  
Kaptanoğlu HT(2008)Positive Schatten class Toeplitz operators on the ball Stud. Math. 189 65-90
[3]  
Choe BR(2002)Positive Toeplitz operators between the harmonic Bergman spaces Potential Anal. 17 307-335
[4]  
Koo H(2004)Toeplitz operators on harmonic Bergman spaces Nagoya Math. J. 174 165-186
[5]  
Lee Y(2004)Positive Toeplitz operators from a harmonic Bergman space into another Tohoku Math. J. (2) 56 255-270
[6]  
Choe BR(1980)Representation theorems for holomorphic and harmonic functions in Astérisque 77 12-66
[7]  
Koo H(2020)Harmonic Besov spaces with small exponents Complex Var. Elliptic Equ. 65 1051-1075
[8]  
Yi H(2019)Inclusion relations between harmonic Bergman–Besov and weighted Bloch spaces on the unit ball Czech. Math. J. 69 503-523
[9]  
Choe BR(2018)Weighted harmonic Bloch spaces on the ball Complex Anal. Oper. Theory 12 1143-1177
[10]  
Lee YJ(1972) spaces of several variables Acta Math. 129 137-193