Hom-Alternative, Hom-Malcev and Hom-Jordan Superalgebras

被引:0
作者
El Kadri Abdaoui
Faouzi Ammar
Abdenacer Makhlouf
机构
[1] University of Sfax,Faculty of Sciences Sfax
[2] University of Haute Alsace,undefined
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2017年 / 40卷
关键词
Hom-alternative superalgebra; Hom-Malcev superalgebra; Hom-Jordan algebra; 17C50; 17C70; 17D05; 17D10;
D O I
暂无
中图分类号
学科分类号
摘要
Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras are Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2}$$\end{document}-graded generalizations of Hom-alternative, Hom-Malcev and Hom-Jordan algebras, which are Hom-type generalizations of alternative, Malcev and Jordan algebras. In this paper we prove that Hom-alternative superalgebras are Hom-Malcev-admissible and are also Hom-Jordan-admissible. Hom-type generalizations of some well known identities in alternative superalgebras, including the Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{2}$$\end{document}-graded Bruck–Kleinfeld function are obtained. Moreover some key constructions and examples are provided.
引用
收藏
页码:439 / 472
页数:33
相关论文
共 46 条
  • [1] Albuquerque H(1997)Superalgebras with semisimple even part Commun. Algebra Logic 25 1573-1587
  • [2] Elduque A(2010)Hom-Lie superalgebras and Hom-Lie admissible superalgebras J. Algebra 324 1513-1528
  • [3] Laliena J(1951)The structure of alternative division rings Proc. Am. Math. Soc. 2 878-890
  • [4] Ammar F(2007)Classification of linearly compact simple Jordan and generalized Poisson superalgebras J. Algebra 313 100-124
  • [5] Makhlouf A(1995)Irreducible non-Lie modules for Malcev superalgebras J. Algebra 173 622-637
  • [6] Bruck RH(1993)On Malcev superalgebras with trivial Lie nucleus J. Algebra Geom. 2 361-366
  • [7] Kleinfled E(1981)Varieties of Mal’tsev algebras Transl. Algebra i Log. 20 300-314
  • [8] Cantarini N(1983)Imbedding of Mal’tsev algebras into alternative algebras Transl. Algebra i Log. 22 443-465
  • [9] Kac VG(2010)On Hom-algebras with surjective twisting J. Algebra 324 1483-1491
  • [10] Elduque A(2006)Deformations of Lie algebras using J. Algebra 295 314-361