Local Null-Controllability of a Nonlocal Semilinear Heat Equation

被引:0
作者
Víctor Hernández-Santamaría
Kévin Le Balc’h
机构
[1] Fundación Deusto,Chair of Computational Mathematics
[2] Institut de Mathématiques de Bordeaux,undefined
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Nonlocal heat equation; Local null-controllability; Semilinear system; Carleman inequalities; 35K58; 93B05; 93B07; 93C20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the problem of internal null-controllability of a heat equation posed on a bounded domain with Dirichlet boundary conditions and perturbed by a semilinear nonlocal term. We prove the small-time local null-controllability of the equation. The proof relies on two main arguments. First, we establish the small-time local null-controllability of a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} reaction-diffusion system, where the second equation is governed by the parabolic operator τ∂t-σΔ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \partial _t - \sigma \varDelta $$\end{document}, τ,σ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau , \sigma > 0$$\end{document}. More precisely, this controllability result is obtained uniformly with respect to the parameters (τ,σ)∈(0,1)×(1,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau , \sigma ) \in (0,1) \times (1, + \infty )$$\end{document}. Secondly, we observe that the semilinear nonlocal heat equation is actually the asymptotic derivation of the reaction-diffusion system in the limit (τ,σ)→(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau ,\sigma ) \rightarrow (0,+\infty )$$\end{document}. Finally, we illustrate these results by numerical simulations.
引用
收藏
页码:1435 / 1483
页数:48
相关论文
共 59 条
[1]  
Ammar-Khodja F(2011)Recent results on the controllability of linear coupled parabolic problems: a survey Math. Control Relat. Fields 1 267-306
[2]  
Benabdallah A(2000)Exact controllability of the superlinear heat equation Appl. Math. Optim. 42 73-89
[3]  
González-Burgos M(2019)Null controllability of linear and semilinear nonlocal heat equations with an additive integral kernel SIAM J. Control Optim. 57 2924-2938
[4]  
de Teresa L(2014)Controllability of fast diffusion coupled parabolic systems. Math. Control Relat. Fields 4 465-479
[5]  
Barbu V(2015)Uniform null controllability for a degenerating reaction-diffusion system approximating a simplified cardiac model SIAM J. Control Optim. 53 3483-3502
[6]  
Biccari U(2015)A uniform controllability result for the Keller-Segel system Asymp. Anal. 92 313-338
[7]  
Hernández-Santamaría V(2013)Theoretical and numerical local null controllability for a parabolic system with local and nonlocal nonlinearities Appl. Math. Comput. 223 483-505
[8]  
Chaves-Silva FW(2000)Insensitizing controls for a semilinear heat equation Commun. Part. Differ. Equ. 25 39-72
[9]  
Guerrero S(2006)Global Carleman inequalities for parabolic systems and applications to controllability SIAM J. Control Optim. 45 1399-1446
[10]  
Puel JP(2000)Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 583-616