On set consensus numbers

被引:0
作者
Eli Gafni
Petr Kuznetsov
机构
[1] University of California,Computer Science Department
[2] TU Berlin/Deutsche Telekom Laboratories,undefined
来源
Distributed Computing | 2011年 / 24卷
关键词
Input Vector; Shared Memory; Directed Acyclic Graph; Correct Process; Reduction Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
It is conjectured that the only way a failure detector (FD) can help solving n-process tasks is by providing k-set consensus for some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k\in\{1,\ldots,n\}}$$\end{document} among all the processes. It was recently shown by Zieliński that any FD that allows for solving a given n-process task that is unsolvable read-write wait-free, also solves (n − 1)-set consensus. In this paper, we provide a generalization of Zieliński’s result. We show that any FD that solves a colorless task that cannot be solved read-write k-resiliently, also solves k-set consensus. More generally, we show that every colorless task \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document} can be characterized by its set consensus number: the largest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k\in\{1,\ldots,n\}}$$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document} is solvable (k − 1)-resiliently. A task \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document} with set consensus number k is, in the failure detector sense, equivalent to k-set consensus, i.e., a FD solves \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{T}}$$\end{document} if and only if it solves k-set consensus. As a corollary, we determine the weakest FD for solving k-set consensus in every environment, i.e., for all assumptions on when and where failures might occur.
引用
收藏
页码:149 / 163
页数:14
相关论文
共 23 条
  • [1] Chaudhuri S.(1993)More Inf. Comput. 105 132-158
  • [2] Herlihy M.(1999) allow more J. ACM 46 858-923
  • [3] Shavit N.(2000): Set consensus problems in totally asynchronous systems SIAM J. Comput. 29 1449-1483
  • [4] Saks M.E.(2001)The topological structure of asynchronous computability Distrib. Comput. 14 127-146
  • [5] Zaharoglou F.(1996)Wait-free k-set agreement is impossible: the topology of public knowledge J. ACM 43 225-267
  • [6] Borowsky E.(1996)The BG distributed simulation algorithm J. ACM 43 685-722
  • [7] Gafni E.(2010)Unreliable failure detectors for reliable distributed systems Distrib. Comput. 22 335-348
  • [8] Lynch N.A.(1978)The weakest failure detector for solving consensus Commun. ACM 21 558-565
  • [9] Rajsbaum S.(1991)Anti-omega: the weakest failure detector for set agreement ACM Trans. Program. Lang. Syst. 13 123-149
  • [10] Chandra T.D.(1998)Time, clocks, and the ordering of events in a distributed system Inf. Process. Lett. 67 293-298