Seasonal variation in N2O emissions from urine patches: Effects of urine concentration, soil compaction and dung

被引:0
|
作者
Jan Willem van Groenigen
Gerard L. Velthof
Frank J. E. van der. Bolt
An Vos
Peter J. Kuikman
机构
[1] Wageningen University and Research Center,Soil Science Center, Alterra
[2] Wageningen University and Research Center,Water and Climate Center, Alterra
来源
Plant and Soil | 2005年 / 273卷
关键词
dung; greenhouse gas emissions; nitrous oxide; soil compaction; urine patches;
D O I
暂无
中图分类号
学科分类号
摘要
Urine patches in pastures rank among the highest sources of the greenhouse gas nitrous oxide (N2O) from animal production systems. Previous laboratory studies indicate that N2O emissions for urine-N in pastures may increase with a factor five or eight in combination with soil compaction and dung, respectively. These combinations of urine, compaction and dung occur regularly in pastures, especially in so-called camping areas. The aims of this study were (i) to experimentally quantify the effect of compaction and dung on emission factors of N2O from urine patches under field conditions; (ii) to detect any seasonal changes in emission from urine patches; and (iii) to quantify possible effects of urine concentration and -volume. A series of experiments on the effects of compaction, dung, urine-N concentration and urine volume was set up at a pasture on a sandy soil (typic Endoaquoll) in Wageningen, the Netherlands. Artificial urine was applied 8 times in the period August 2000–November 2001, and N2O emissions were monitored for a minimum of 1 month after each application. The average emission factor for urine-only treatments was 1.55%. Over the whole period, only soil compaction had a clear significant effect, raising the average N2O emissions from urine patches from 1.30% to 2.92% of the applied N. Dung had no consistent effect; although it increased the average emissions from 1.60% to 2.82%, this was clearly significant (P< 0.01) for only one application date and marginally significant (P=0.054) for the whole experiment. Both compaction and dung increased water-filled pore space (WFPS) of the topsoil for a more prolonged time than high urine volumes. No effect of amount of urine-N or urine volume on N2O emissions relative to added N was detected for the whole experiment. There were clear differences between application dates, with highest emissions for urine-only treatments of 4.25% in October, 2000, and lowest of −0.11% in June, 2001. Emissions peaked at 60–70% WFPS, and decreased rapidly with both higher and lower WFPS. We conclude that compaction leads to a considerable increase in the N2O emissions under field conditions, mainly through higher WFPS. Dung addition may have the same effect, although this was not consistent throughout our experiment. Seasonal variations seemed mainly driven by differences in WFPS. Based on this study, mitigation strategies should focus on minimizing the grazing period with wet conditions leading to WFPS > 50%, avoiding camping areas in pastures, and on avoiding grazing under moist soil conditions. Greenhouse gas budgets for grazing conditions should include the effects of soil compaction and dung to represent actual emissions.
引用
收藏
页码:15 / 27
页数:12
相关论文
共 50 条
  • [1] Seasonal variation in N2O emissions from urine patches:: Effects of urine concentration, soil compaction and dung
    van Groenigen, JW
    Velthof, GL
    van der Bolt, FJE
    Vos, A
    Kuikman, PJ
    PLANT AND SOIL, 2005, 273 (1-2) : 15 - 27
  • [2] N2O emissions from urine-treated tropical soil: Effects of soil moisture and compaction, urine composition, and dung addition
    Cardoso, Abmael da Silva
    Quintana, Bruna Giovani
    Janusckiewicz, Estella Rosseto
    Brito, Liziane de Figueiredo
    Morgado, Eliane da Silva
    Reis, Ricardo Andrade
    Ruggieri, Ana Claudia
    CATENA, 2017, 157 : 325 - 332
  • [3] Effects of aggregate size, soil compaction, and bovine urine on N2O emissions from a pasture soil
    Uchida, Yoshitaka
    Clough, Tim J.
    Kelliher, Francis M.
    Sherlock, Robert R.
    SOIL BIOLOGY & BIOCHEMISTRY, 2008, 40 (04): : 924 - 931
  • [4] Contribution of nitrification and denitrification to N2O emissions from urine patches
    Carter, Mette S.
    SOIL BIOLOGY & BIOCHEMISTRY, 2007, 39 (08): : 2091 - 2102
  • [5] Fertiliser and seasonal urine effects on N2O emissions from the urine-fertiliser interface of a grazed pasture
    Buckthought, L. E.
    Clough, T. J.
    Cameron, K. C.
    Di, H. J.
    Shepherd, M. A.
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2015, 58 (03) : 311 - 324
  • [6] Effects of dung and urine amendments on the isotopic content of N2O released from grasslands
    Yamulki, S
    Wolf, I
    Bol, R
    Grant, B
    Brumme, R
    Veldkamp, E
    Jarvis, SC
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2000, 14 (15) : 1356 - 1360
  • [7] Diet effects on urine composition of cattle and N2O emissions
    Dijkstra, J.
    Oenema, O.
    van Groenigen, J. W.
    Spek, J. W.
    van Vuuren, A. M.
    Bannink, A.
    ANIMAL, 2013, 7 : 292 - 302
  • [8] Impacts of feedlot floor condition, deposition frequency, and inhibitors on N2O and CH4 emissions from feedlot dung and urine patches
    Liao, Wenhua
    Liu, Chunjing
    Gao, Zhiling
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2018, 68 (07) : 700 - 712
  • [9] Influence of soil pH on NOx and N2O emissions from bovine urine applied to soil columns
    Khan, S.
    Clough, T. J.
    Goh, K. M.
    Sherlock, R. R.
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2011, 54 (04) : 285 - 301
  • [10] Influence of photosynthetically active radiation on diurnal N2O emissions under ruminant urine patches
    Das, B. T.
    Hamonts, K.
    Moltchanova, E.
    Clough, T. J.
    Condron, L. M.
    Wakelin, S. A.
    O'Callaghan, M.
    NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH, 2012, 55 (04) : 319 - 331