On the Laplace Transform of the Lognormal Distribution

被引:0
作者
Søren Asmussen
Jens Ledet Jensen
Leonardo Rojas-Nandayapa
机构
[1] Aarhus University,Department of Mathematics
[2] University of Queensland,School of Mathematics and Physics
来源
Methodology and Computing in Applied Probability | 2016年 / 18卷
关键词
Characteristic function; Efficiency; Importance sampling; Lambert W function; Laplace transform; Laplace’s method; Lognormal distribution; Moment generating function; Monte Carlo method; Rare event simulation; 60E05; 60E10; 90-04;
D O I
暂无
中图分类号
学科分类号
摘要
Integral transforms of the lognormal distribution are of great importance in statistics and probability, yet closed-form expressions do not exist. A wide variety of methods have been employed to provide approximations, both analytical and numerical. In this paper, we analyse a closed-form approximation ℒ~(𝜃)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\widetilde {\mathcal {L}}(\theta )$\end{document} of the Laplace transform ℒ(𝜃)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {L}(\theta )$\end{document} which is obtained via a modified version of Laplace’s method. This approximation, given in terms of the Lambert W(⋅) function, is tractable enough for applications. We prove that ~(𝜃) is asymptotically equivalent to ℒ(𝜃) as 𝜃 → ∞. We apply this result to construct a reliable Monte Carlo estimator of ℒ(𝜃) and prove it to be logarithmically efficient in the rare event sense as 𝜃 → ∞.
引用
收藏
页码:441 / 458
页数:17
相关论文
共 18 条
[1]  
Barakat R(1976)Sums of independent lognormally distributed random variables J Opt Soc Am 66 211-216
[2]  
Beaulieu NC(2004)An optimal lognormal approximation to lognormal sum distributions IEEE Trans Veh Technol 53 479-489
[3]  
Xie Q(1996)On the Lambert W function Adv Comput Math 5 329-359
[4]  
Corless RM(2006)A new formula for lognormal characteristic functions IEEE Trans Veh Technol 55 1668-1671
[5]  
Gonnet GH(1963)On a property of the lognormal distribution J Roy Stat Soc Ser B 29 392-393
[6]  
Hare DEG(1989)The lognormal characteristic function Commun Stat-Theor Methods 18 4539-4548
[7]  
Jeffrey DJ(1991)On lognormal random variables: I. the characteristic function J Aust Math Soc Ser B 32 327-347
[8]  
Knuth DE(2001)Log-normal distributions across the sciences: keys and clues BioScience 51 341-352
[9]  
Gubner JA(2008)Laplace transforms or probability distributions and their inversions are easy on logarithmic scales J Appl Probab 45 531-541
[10]  
Heyde C(2010)Accurate computation of the MGF of the lognormal distribution and its application to sum of lognormals IEEE Trans Commun 58 1568-1577