Isometric embedding and Darboux integrability

被引:0
|
作者
J. N. Clelland
T. A. Ivey
N. Tehseen
P. J. Vassiliou
机构
[1] University of Colorado,Department of Mathematics
[2] College of Charleston,Department of Mathematics
[3] La Trobe University,Department of Mathematics and Statistics
[4] Australian National University,Department of Theoretical Physics
来源
Geometriae Dedicata | 2019年 / 203卷
关键词
Exterior differential system; Moving frames; Riemannian surface metrics; 53A55; 58A17; 58A30; 93C10;
D O I
暂无
中图分类号
学科分类号
摘要
Given a smooth 2-dimensional Riemannian or pseudo-Riemannian manifold (M,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M, \varvec{g})$$\end{document} and an ambient 3-dimensional Riemannian or pseudo-Riemannian manifold (N,h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N, \varvec{h})$$\end{document}, one can ask under what circumstances does the exterior differential system I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {I}$$\end{document} for an isometric embedding M↪N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\hookrightarrow N$$\end{document} have particularly nice solvability properties. In this paper we give a classification of all 2-dimensional metrics g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{g}$$\end{document} whose isometric embedding system into flat Riemannian or pseudo-Riemannian 3-manifolds (N,h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(N, \varvec{h})$$\end{document} is Darboux integrable. As an illustration of the motivation behind the classification, we examine in detail one of the classified metrics, g0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{g}_0$$\end{document}, showing how to use its Darboux integrability in order to construct all its embeddings in finite terms of arbitrary functions. Additionally, the geometric Cauchy problem for the embedding of g0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{g}_0$$\end{document} is shown to be reducible to a system of two first-order ODEs for two unknown functions—or equivalently, to a single second-order scalar ODE. For a large class of initial data, this reduction permits explicit solvability of the geometric Cauchy problem for g0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{g}_0$$\end{document} up to quadrature. The results described for g0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{g}_0$$\end{document} also hold for any classified metric whose embedding system is hyperbolic.
引用
收藏
页码:353 / 388
页数:35
相关论文
共 50 条
  • [21] Darboux theory of integrability in T n
    Llibre, Jaume
    Valls, Claudia
    EUROPEAN JOURNAL OF MATHEMATICS, 2024, 10 (02)
  • [22] On the Darboux Integrability of the Hindmarsh–Rose Burster
    Jaume LLIBRE
    Clàudia VALLS
    Acta Mathematica Sinica,English Series, 2018, (06) : 947 - 958
  • [23] On the Darboux integrability of the Painlevé II equations
    Jaume Llibre
    Claudia Valls
    Journal of Nonlinear Mathematical Physics, 2015, 22 : 60 - 75
  • [24] Inverse Problems in Darboux’ Theory of Integrability
    Colin Christopher
    Jaume Llibre
    Chara Pantazi
    Sebastian Walcher
    Acta Applicandae Mathematicae, 2012, 120 : 101 - 126
  • [25] On the Darboux Integrability of Polynomial Differential Systems
    Jaume Llibre
    Xiang Zhang
    Qualitative Theory of Dynamical Systems, 2012, 11 : 129 - 144
  • [26] On the Darboux Integrability of the Hindmarsh–Rose Burster
    Jaume LLIBRE
    Cludia VALLS
    Acta Mathematica Sinica, 2018, 34 (06) : 947 - 958
  • [27] Darboux integrability and the inverse integrating factor
    Chavarriga, J
    Giacomini, H
    Giné, J
    Llibre, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 116 - 139
  • [28] Darboux theory of integrability in the sparse case
    Cheze, Guillaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (02) : 601 - 609
  • [29] Liouvillian Integrability Versus Darboux Polynomials
    Jaume Llibre
    Claudia Valls
    Xiang Zhang
    Qualitative Theory of Dynamical Systems, 2016, 15 : 503 - 515
  • [30] On the Darboux integrability of the Painleve II equations
    Llibre, Jaume
    Valls, Claudia
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2015, 22 (01) : 60 - 75