Strategies for spectrum slicing based on restarted Lanczos methods

被引:0
作者
Carmen Campos
Jose E. Roman
机构
[1] Universitat Politècnica de València,D. Sistemes Informàtics i Computació
来源
Numerical Algorithms | 2012年 / 60卷
关键词
Large-scale eigenvalue computations; Spectrum slicing; Parallel numerical libraries;
D O I
暂无
中图分类号
学科分类号
摘要
In the context of symmetric-definite generalized eigenvalue problems, it is often required to compute all eigenvalues contained in a prescribed interval. For large-scale problems, the method of choice is the so-called spectrum slicing technique: a shift-and-invert Lanczos method combined with a dynamic shift selection that sweeps the interval in a smart way. This kind of strategies were proposed initially in the context of unrestarted Lanczos methods, back in the 1990’s. We propose variations that try to incorporate recent developments in the field of Krylov methods, including thick restarting in the Lanczos solver and a rational Krylov update when moving from one shift to the next. We discuss a parallel implementation in the SLEPc library and provide performance results.
引用
收藏
页码:279 / 295
页数:16
相关论文
共 34 条
  • [1] Amestoy PR(2000)Multifrontal parallel distributed symmetric and unsymmetric solvers Comput. Methods Appl. Mech. Eng. 184 501-520
  • [2] Duff IS(1980)The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems Math. Comput. 35 1251-1268
  • [3] L’Excellent JY(1994)A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems SIAM J. Matrix Anal. Appl. 15 228-272
  • [4] Ericsson T(2005)SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems ACM Trans. Math. Softw. 31 351-362
  • [5] Ruhe A(2007)Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement Parallel Comput. 33 521-540
  • [6] Grimes RG(2001)Changing poles in the rational Lanczos method for the Hermitian eigenvalue problem Numer. Linear Algebra Appl. 8 33-52
  • [7] Lewis JG(1987)How to implement the spectral transformation Math. Comput. 48 663-673
  • [8] Simon HD(2006)Rational Krylov for eigenvalue computation and model order reduction BIT Numer. Math. 46 99-111
  • [9] Hernandez V(1984)Rational Krylov sequence methods for eigenvalue computation Linear Algebra Appl. 58 391-405
  • [10] Roman JE(1992)Implicit application of polynomial filters in a SIAM J. Matrix Anal. Appl. 13 357-385