Ordering positive definite matrices

被引:0
|
作者
Mostajeran C. [1 ]
Sepulchre R. [1 ]
机构
[1] Department of Engineering, University of Cambridge, Cambridge
基金
英国工程与自然科学研究理事会; 欧洲研究理事会; 欧盟地平线“2020”;
关键词
Differential positivity; Matrix means; Monotone flows; Monotone functions; Partial orders; Positive definite matrices;
D O I
10.1007/s41884-018-0003-7
中图分类号
学科分类号
摘要
We introduce new partial orders on the set Sn+ of positive definite matrices of dimension n derived from the affine-invariant geometry of Sn+. The orders are induced by affine-invariant cone fields, which arise naturally from a local analysis of the orders that are compatible with the homogeneous geometry of Sn+ defined by the natural transitive action of the general linear group GL(n). We then take a geometric approach to the study of monotone functions on Sn+ and establish a number of relevant results, including an extension of the well-known Löwner-Heinz theorem derived using differential positivity with respect to affine-invariant cone fields. © 2018, The Author(s).
引用
收藏
页码:287 / 313
页数:26
相关论文
共 50 条
  • [1] DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES
    Choi, Daeshik
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01): : 167 - 172
  • [2] Measurable diagonalization of positive definite matrices
    Quintana, Yamilet
    Rodriguez, Jose M.
    JOURNAL OF APPROXIMATION THEORY, 2014, 185 : 91 - 97
  • [3] A remark on approximating permanents of positive definite matrices
    Barvinok, Alexander
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 608 : 399 - 406
  • [4] EXTENSION OF DETERMINANTAL INEQUALITIES OF POSITIVE DEFINITE MATRICES
    Fu, Xiaohui
    Liu, Yang
    Liu, Shunqin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 355 - 359
  • [5] Tensor Dictionary Learning for Positive Definite Matrices
    Sivalingam, Ravishankar
    Boley, Daniel
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) : 4592 - 4601
  • [6] Localization of the eigenvalues of a pencil of positive definite matrices
    I. E. Kaporin
    Computational Mathematics and Mathematical Physics, 2008, 48 : 1917 - 1926
  • [7] Localization of the Eigenvalues of a Pencil of Positive Definite Matrices
    Kaporin, I. E.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (11) : 1917 - 1926
  • [8] Tensor Sparse Coding for Positive Definite Matrices
    Sivalingam, Ravishankar
    Boley, Daniel
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) : 592 - 605
  • [9] Bayesian Nonparametric Clustering for Positive Definite Matrices
    Cherian, Anoop
    Morellas, Vassilios
    Papanikolopoulos, Nikolaos
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (05) : 862 - 874
  • [10] Inequalities for the Wasserstein mean of positive definite matrices
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 576 : 108 - 123