CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway

被引:0
|
作者
Chris D. Richardson
Katelynn R. Kazane
Sharon J. Feng
Elena Zelin
Nicholas L. Bray
Axel J. Schäfer
Stephen N. Floor
Jacob E. Corn
机构
[1] University of California,Innovative Genomics Institute
[2] Berkeley,Department of Molecular and Cell Biology
[3] University of California,Department of Cell and Tissue Biology
[4] Berkeley,undefined
[5] University of California,undefined
[6] San Francisco,undefined
来源
Nature Genetics | 2018年 / 50卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
CRISPR–Cas genome editing creates targeted DNA double-strand breaks (DSBs) that are processed by cellular repair pathways, including the incorporation of exogenous DNA via single-strand template repair (SSTR). To determine the genetic basis of SSTR in human cells, we developed a coupled inhibition-cutting system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. We found that human Cas9-induced SSTR requires the Fanconi anemia (FA) pathway, which is normally implicated in interstrand cross-link repair. The FA pathway does not directly impact error-prone, non-homologous end joining, but instead diverts repair toward SSTR. Furthermore, FANCD2 protein localizes to Cas9-induced DSBs, indicating a direct role in regulating genome editing. Since FA is itself a genetic disease, these data imply that patient genotype and/or transcriptome may impact the effectiveness of gene editing treatments and that treatments biased toward FA repair pathways could have therapeutic value.
引用
收藏
页码:1132 / 1139
页数:7
相关论文
共 50 条
  • [21] CRISPR/Cas9 viral like particles for targeted genome editing in human cells
    Petris, G.
    Montagna, C.
    Casini, A.
    Maule, G.
    Zanella, I.
    Zacchigna, S.
    Zentilin, L.
    Giacca, M.
    Cereseto, A.
    HUMAN GENE THERAPY, 2016, 27 (11) : A131 - A131
  • [22] Baculoviral delivery of CRISPR/Cas9 facilitates efficient genome editing in human cells
    Hindriksen, Sanne
    Bramer, Arne J.
    My Anh Truong
    Vromans, Martijn J. M.
    Post, Jasmin B.
    Verlaan-Klink, Ingrid
    Snippert, Hugo J.
    Lens, Susanne M. A.
    Hadders, Michael A.
    PLOS ONE, 2017, 12 (06):
  • [23] Modeling human disease in rodents by CRISPR/Cas9 genome editing
    Marie-Christine Birling
    Yann Herault
    Guillaume Pavlovic
    Mammalian Genome, 2017, 28 : 291 - 301
  • [24] Modeling human disease in rodents by CRISPR/Cas9 genome editing
    Birling, Marie-Christine
    Herault, Yann
    Pavlovic, Guillaume
    MAMMALIAN GENOME, 2017, 28 (7-8) : 291 - 301
  • [25] Editing the genome in cells and mice using CRISPR/Cas9 technology
    Herold, M. J.
    Aubrey, B. J.
    Kelly, G. L.
    Kueh, A. J.
    Brennan, M. S.
    O'Connor, L.
    Milla, L.
    Wilcox, S.
    Tai, L.
    Strasser, A.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 10 - 10
  • [26] Genome Editing in Erythroid Progenitor Cells Mediated By Crispr/Cas9
    Li, Hojun
    Shi, Jiahai
    Lodish, Harvey F.
    BLOOD, 2014, 124 (21)
  • [27] CRISPR/CAS9 GENOME EDITING FOR NEURODEGENERATIVE DISEASES
    Nojadeh, Jafar Nouri
    Eryilmaz, Nur Seren Bildiren
    Erguder, Berrin Imge
    EXCLI JOURNAL, 2023, 22 : 567 - 582
  • [28] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [29] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [30] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053