Morrey–Sobolev Extension Domains

被引:0
作者
Pekka Koskela
Yi Ru-Ya Zhang
Yuan Zhou
机构
[1] University of Jyväskylä,Department of Mathematics and Statistics
[2] Beijing University of Aeronautics and Astronautics,Department of Mathematics
来源
The Journal of Geometric Analysis | 2017年 / 27卷
关键词
Morrey–Sobolev space; Extension; LLC; Uniform domain; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
We show that every uniform domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document} with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} is a Morrey–Sobolev W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {W}}^{1,\,p}$$\end{document}-extension domain for all p∈[1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\,n)$$\end{document}, and moreover, that this result is essentially the best possible for each p∈[1,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in [1,\,n)$$\end{document} in the sense that, given a simply connected planar domain or a domain of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\mathbb {R}}}^n}$$\end{document} with n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 3$$\end{document} that is quasiconformal equivalent to a uniform domain, if it is a W1,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {W}}^{1,\,p} $$\end{document}-extension domain, then it must be uniform.
引用
收藏
页码:1413 / 1434
页数:21
相关论文
共 14 条
  • [1] Gehring FW(1985)Quasiextremal distance domains and extension of quasiconformal mappings J. Anal. Math. 45 181-206
  • [2] Martio O(2008)Sobolev embeddings, extensions and measure density condition J. Funct. Anal. 254 1217-1234
  • [3] Hajłasz P(1991)Uniform, Sobolev extension and quasiconformal circle domains J. Anal. Math. 57 172-202
  • [4] Koskela P(1981)Quasiconformal mappings and extendability of functions in Sobolev spaces Acta Math. 147 71-88
  • [5] Tuominen H(1998)Extensions and imbeddings J. Funct. Anal. 159 369-384
  • [6] Herron DA(2010)A Jordan Sobolev extension domain Ann. Acad. Sci. Fenn. Math. 35 309-320
  • [7] Koskela P(1981)On the extension of functions belonging to S. L. Sobolev spaces (Russian), Investigations on linear operators and the theory of functions, XI Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 231-236
  • [8] Jones PW(2010)On Sobolev extension domains in J. Funct. Anal. 258 2205-2245
  • [9] Koskela P(undefined)undefined undefined undefined undefined-undefined
  • [10] Koskela P(undefined)undefined undefined undefined undefined-undefined