Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {L}}^{{\mathbf {p}}}$$\end{document}-Sobolev Estimates for a Class of Integral Operators with Folding Canonical Relations

被引:0
|
作者
Malabika Pramanik
Andreas Seeger
机构
[1] University of British Columbia,Department of Mathematics
[2] University of Wisconsin-Madison,Department of Mathematics
关键词
Regularity of integral operators; Radon transforms; Fourier integral operators; Folding canonical relations; Sobolev spaces; 35S30; 44A12; 42B20; 42B35;
D O I
10.1007/s12220-020-00388-0
中图分类号
学科分类号
摘要
We prove a sharp Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-Sobolev regularity result for a class of generalized Radon transforms for families of curves in a three-dimensional manifold, with folding canonical relations. The proof relies on decoupling inequalities by Wolff and by Bourgain–Demeter for plate decompositions of thin neighborhoods of cones.
引用
收藏
页码:6725 / 6765
页数:40
相关论文
共 36 条