On weakly s-semipermutable or ss-quasinormal subgroups of finite groups

被引:1
作者
Qingjun Kong
Xiuyun Guo
机构
[1] Tianjin Polytechnic University,Department of Mathematics
[2] Shanghai University,Department of Mathematics
来源
Ricerche di Matematica | 2019年 / 68卷
关键词
Weakly ; -semipermutable subgroup; -quasinormal subgroup; Saturated formation; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a finite group and H is a subgroup of G. H is said to be weakly s-semipermutable in G if there are a subnormal subgroup T of G and an s-semipermutable subgroup HssG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{ssG}$$\end{document} of G contained in H such that G=HT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=HT$$\end{document} and H∩T≤HssG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\cap T\le H_{ssG}$$\end{document}; H is said to be an ss-quasinormal subgroup of G if there is a subgroup B of G such that G=HB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G=HB$$\end{document} and H permutes with every Sylow subgroup of B. We fix in every non-cyclic Sylow subgroup P of G some subgroup D satisfying 1<|D|<|P|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<|D|<|P|$$\end{document} and study the structure of G under the assumption that every subgroup H of P with |H|=|D|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|H|=|D|$$\end{document} is either weakly s-semipermutable or ss-quasinormal in G. Some recent results are generalized and unified.
引用
收藏
页码:571 / 579
页数:8
相关论文
共 25 条
[1]  
Ballester-Bolinches A(2009)Local embeddings of some families of subgroups of finite group Acta Math. Sin. (Engl. Ser.) 25 869-882
[2]  
Ezquerro LM(1963)On quasinormal subgroups of finite groups Math. Z. 82 125-132
[3]  
Skiba AN(1962)Sylow Gruppen und subnormalteiler endlicher Gruppen Math. Z. 78 205-221
[4]  
Deskins WE(2008)on Commun. Algebra 36 4436-4447
[5]  
Kegel OH(2008)-quasinormal subgroups of finite subgroups J. Algebra 319 4275-4287
[6]  
Li S(2012)The influence of J. Algebra 371 250-261
[7]  
Shen Z(2003)-quasinormality of some subgroups on the structure of finite groups Arch. Math. 81 245-252
[8]  
Kong X(2002)On weakly Proc. Am. Math. Soc. 131 337-341
[9]  
Li S(2007)-semipermutable subgroups of finite groups J. Algebra 315 192-209
[10]  
Shen Z(1998)The influence of J. Algebra 207 285-293