Conditions for the solvability of boundary value problems for quasi-elliptic systems in a half-space

被引:0
作者
L. N. Bondar’
机构
[1] Russian Academy of Sciences,Sobolev Institute of Mathematics, Siberian Branch
来源
Differential Equations | 2012年 / 48卷
关键词
Sobolev Space; Vector Function; Constant Independent; Canonical Basis; Solvability Condition;
D O I
暂无
中图分类号
学科分类号
摘要
We consider boundary value problems in a half-space for a class of quasi-elliptic systems with constant coefficients. We assume that the boundary value problems satisfy the Lopatinskii condition. We obtain necessary and sufficient conditions for their unique solvability in Sobolev spaces.
引用
收藏
页码:343 / 353
页数:10
相关论文
共 8 条
[1]  
Volevich L.R.(1962)Local Properties of Solutions of Quasi-Elliptic Systems Mat. Sb. 59 3-52
[2]  
Demidenko G.V.(2006)On Solvability of Boundary Value Problems for Quasi-Elliptic Systems in J. Anal. Appl. 4 1-11
[3]  
Demidenko G.V.(1994)Integral Operators Defined by Quasi-Elliptic Equations. II Sibirsk. Mat. Zh. 35 41-65
[4]  
Demidenko G.V.(1988)Well-Posed Solvability of Boundary Value Problems in a Half-Space for Quasi-Elliptic Equations Sibirsk. Mat. Zh. 29 54-67
[5]  
Bondar’ L.N.(2007)Solvability Conditions for Boundary Value Problems for Quasi-Elliptic Systems Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 7 9-26
[6]  
Bondar’ L.N.(2008)Boundary Value Problems for Quasi-Elliptic Systems Sibirsk. Mat. Zh. 49 256-273
[7]  
Demidenko G.V.(1972)On the Representation of Functions Defined by a Class of Hypoelliptic Operators Tr. Mat. Inst. Steklova 117 292-299
[8]  
Uspenskii S.V.(undefined)undefined undefined undefined undefined-undefined