Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants

被引:1
|
作者
Rafael de Souza Miranda
Juan Carlos Alvarez-Pizarro
Celso Marinones Silva Araújo
José Tarquinio Prisco
Enéas Gomes-Filho
机构
[1] Universidade Federal do Ceará,Departamento de Bioquímica e Biologia Molecular and Instituto Nacional de Ciência e Tecnologia em Salinidade (INCTSal/CNPq)
来源
关键词
Inorganic nitrogen; K; /Na; homeostasis; Salinity;
D O I
暂无
中图分类号
学科分类号
摘要
This work aimed to study the regulation of K+/Na+ homeostasis and the physiological responses of salt-treated sorghum plants [Sorghum bicolor (L.) Moench] grown with different inorganic nitrogen (N) sources. Four days after sowing (DAS), the plants were transferred to complete nutrient solutions containing 0.75 mM K+ and 5 mM N, supplied as either NO3− or NH4+. Twelve DAS, the plants were subjected to salt stress with 75 mM NaCl, which was applied in two doses of 37.5 mM. The plants were harvested on the third and seventh days after the exposure to NaCl. Under the salt stress conditions, the reduction of K+ concentrations in the shoot and roots was higher in the culture with NO3− than with NH4+. However, the more conspicuous effect of N was on the Na+ accumulation, which was severely limited in the presence of NH4+. This ionic regulation had a positive influence on the K+/Na+ ratio and the selective absorption and transport of K+ in the plants grown with NH4+. Under control and salt stress conditions, higher accumulation of free amino acids and soluble proteins was promoted in NH4+ grown roots than NO3− grown roots at both harvesting time, whereas higher accumulation of soluble sugars was observed only at 7 days of salt stress exposure. Unlike the NH4+ grown plants, the gas exchanges of the NO3− grown plants were reduced after 7 days of salt stress. These results suggest that external NH4+ may limit Na+ accumulation in sorghum, which could contribute to improving its physiological and metabolic responses to salt stress.
引用
收藏
页码:841 / 852
页数:11
相关论文
共 50 条
  • [1] Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants
    Miranda, Rafael de Souza
    Alvarez-Pizarro, Juan Carlos
    Silva Araujo, Celso Marinones
    Prisco, Jose Tarquinio
    Gomes-Filho, Eneas
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (03) : 841 - 852
  • [2] Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants
    Almeida, Diego M.
    Oliveira, M. Margarida
    Saibo, Nelson J. M.
    GENETICS AND MOLECULAR BIOLOGY, 2017, 40 (01) : 326 - 345
  • [3] Sodium (Na+) homeostasis and salt tolerance of plants
    Hasegawa, Paul M.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2013, 92 : 19 - 31
  • [4] Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance
    Sun, Jian
    Dai, Songxiang
    Wang, Ruigang
    Chen, Shaoliang
    Li, Niya
    Zhou, Xiaoyang
    Lu, Cunfu
    Shen, Xin
    Zheng, Xiaojiang
    Hu, Zanmin
    Zhang, Zengkai
    Song, Jin
    Xu, Yue
    TREE PHYSIOLOGY, 2009, 29 (09) : 1175 - 1186
  • [5] A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana
    Wang, Jun-Ying
    Wang, Jun-Ping
    He-Yuan
    GENE, 2013, 521 (02) : 265 - 273
  • [6] The rice LATE ELONGATED HYPOCOTYL enhances salt tolerance by regulating Na+/K+ homeostasis and ABA signalling
    Li, Chao
    He, Yi-Qin
    Yu, Jie
    Kong, Jia-Rui
    Ruan, Cheng-Cheng
    Yang, Zhen-Kun
    Zhuang, Jun-Jie
    Wang, Yu-Xiao
    Xu, Jian-Hong
    PLANT CELL AND ENVIRONMENT, 2024, 47 (05): : 1625 - 1639
  • [7] S-ABA Enhances Rice Salt Tolerance by Regulating Na+/K+ Balance and Hormone Homeostasis
    Jiang, Wenxin
    Wang, Xi
    Wang, Yaxin
    Du, Youwei
    Zhang, Shuyu
    Zhou, Hang
    Feng, Naijie
    Zheng, Dianfeng
    Ma, Guohui
    Zhao, Liming
    METABOLITES, 2024, 14 (04)
  • [8] Populus euphratica Phospholipase Dδ Increases Salt Tolerance by Regulating K+/Na+ and ROS Homeostasis in Arabidopsis
    Zhang, Ying
    Yao, Jun
    Yin, Kexin
    Liu, Zhe
    Zhang, Yanli
    Deng, Chen
    Liu, Jian
    Zhang, Yinan
    Hou, Siyuan
    Zhang, Huilong
    Yu, Dade
    Zhao, Nan
    Zhao, Rui
    Chen, Shaoliang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [9] EFFECT OF NA+ OR K+ ON PHOSPHORYLATION OF (NA+ + K+) ATPASE BY INORGANIC-PHOSPHATE
    TODA, G
    ROGERS, FN
    POST, RL
    FEDERATION PROCEEDINGS, 1972, 31 (02) : A344 - &
  • [10] Na+ AND K+ HOMEOSTASIS IS IMPORTANT FOR SALINITY AND DROUGHT TOLERANCE OF CALLIGONUM MONGOLICUM
    Hu, Jing
    Hu, Xiaoke
    Duan, Huirong
    Zhang, Huiwen
    Yu, Qiushi
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (06) : 1927 - 1934