Existence and stability of solitary waves for the generalized Korteweg-de Vries equations

被引:0
|
作者
Mingli Hong
机构
[1] Institute of Disaster Prevention,
来源
Boundary Value Problems | / 2013卷
关键词
generalized Korteweg-de Vries equations; constrained minimization problems; concentration-compactness; stability;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the fractional Korteweg-de Vries equations with general nonlinearities. By studying constrained minimization problems and applying the method of concentration-compactness, we obtain the existence of solitary waves for the generalized Korteweg-de Vries equations under some assumptions of the nonlinear term. Moreover, we prove that the set of minimizers is a stable set for the initial value problem of the equations, in the sense that a solution which starts near the set will remain near it for all time.
引用
收藏
相关论文
共 50 条
  • [41] Interacting Solitons, Periodic Waves and Breather for Modified Korteweg-de Vries Equation
    Kruglov, Vladimir I.
    Triki, Houria
    CHINESE PHYSICS LETTERS, 2023, 40 (09)
  • [42] Riesz potentials for Korteweg-de Vries solitons
    Varlamov, Vladimir
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 41 - 61
  • [43] Coupled system of Korteweg-de Vries equations type in domains with moving boundaries
    Bisognin, Eleni
    Bisognin, Vanilde
    Sepulveda, Mauricio
    Vera, Octavio
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 290 - 321
  • [44] Constructive Study of Modulational Instability in Higher Order Korteweg-de Vries Equations
    Tobisch, Elena
    Pelinovsky, Efim
    FLUIDS, 2019, 4 (01):
  • [45] Solitary wave solution and a linear mass-conservative difference scheme for the generalized Korteweg-de Vries-Kawahara equation
    Wang, Xiaofeng
    Cheng, Hong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [46] DISCRETE SINGULAR CONVOLUTION FOR THE GENERALIZED VARIABLE-COEFFICIENT KORTEWEG-DE VRIES EQUATION
    Mare, Eben
    Mba, Jules Clement
    Pindza, Edson
    QUAESTIONES MATHEMATICAE, 2017, 40 (02) : 225 - 244
  • [47] Instability of periodic waves for the Korteweg-de Vries-Burgers equation with monostable source
    Folino, Raffaele
    Naumkina, Anna
    Plaza, Ramon G.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [48] ARBITRARILY HIGH-ORDER CONSERVATIVE SCHEMES FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION
    Yang, Kai
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A2709 - A2733
  • [49] Boundary linear stabilization of the modified generalized Korteweg-de Vries-Burgers equation
    Smaoui, Nejib
    Chentouf, Boumediene
    Alalabi, Ala'
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [50] Adaptive boundary control of the unforced generalized Korteweg-de Vries-Burgers equation
    Smaoui, N.
    El-Kadri, A.
    Zribi, M.
    NONLINEAR DYNAMICS, 2012, 69 (03) : 1237 - 1253