Spatial Behaviour of Solutions of the Moore-Gibson-Thompson Equation

被引:0
作者
M. Ostoja-Starzewski
R. Quintanilla
机构
[1] University of Illinois at Urbana-Champaign,Department of Mechanical Science & Engineering
[2] Universitat Politècnica de Catalunya - Departament de Matemàtiques,undefined
来源
Journal of Mathematical Fluid Mechanics | 2021年 / 23卷
关键词
Moore-Gibson-Thompson equation; Spatial estimates; Domain of influence; Exponential decay;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we study the spatial behaviour of the Moore-Gibson-Thompson equation. As it is a hyperbolic equation, we prove that the solutions do not grow along certain spatial-time lines. Given the presence of dissipation, we show that the solutions also decay exponentially in certain directions.
引用
收藏
相关论文
共 44 条
[1]  
Bofill F(1997)Spatial estimates for dynamical problems in several elasticity theories Ricerche di Matematica 46 425-441
[2]  
Quintanilla R(1996)Saint-Venant‘s principle in linear elastodynamics J. Elast. 42 201-215
[3]  
Chirita S(2007)On a thermoelastic three-phase-lag model J. Therm. Stresses 30 231-238
[4]  
Quintanilla R(2015)Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation Appl. Math. Inf. Sci. 9 2233-2238
[5]  
Roy Choudhuri SK(2020)Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature Asymptotic Anal. 120 1-21
[6]  
Conejero JA(2016)The Moore-Gibson-Thompson equation with memory in the critical case J. Diff. Equa. 261 4188-4222
[7]  
Lizama C(2017)On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity Appl. Math. Optim. 76 641-655
[8]  
Ródenas F(2017)On a fourth-order equation of Moore-Gibson-Thompson type Milan J. Math. 85 215-234
[9]  
Conti M(2014)On the Green-Naghdi type III heat conduction model Discrete Contin. Dyn. Syst. Ser. B 19 2133-2143
[10]  
Pata V(1992)On undamped heat waves in an elastic solid J. Therm. Stresses 15 253-264