The orbit method and Gelfand pairs, associated with nilpotent Lie groups

被引:0
|
作者
Chal Benson
Joe Jenkins
Gail Ratcliff
机构
[1] University of Missouri-St. Louis,Department of Math and Computer Sciences
[2] National Science Foundation,Division of Math Sciences
关键词
22E30; 43A55; Gelfand pairs; nilpotent groups; orbit method;
D O I
10.1007/BF02921973
中图分类号
学科分类号
摘要
Let K be a compact Lie group acting by automorphisms on a nilpotent Lie group N. One calls (K, N) a Gelfand pair when the integrable K-invariant functions on N form a commutative algebra under convolution. We prove that in this case the coadjoint orbits for G:= K × N which meet the annihilator[graphic not available: see fulltext] of the Lie algebra[graphic not available: see fulltext] of K do so in single K-orbits. This generalizes a result of the authors and R. Lipsman concerning Gelfand pairs associated with Heisenberg groups.
引用
收藏
页码:569 / 582
页数:13
相关论文
共 28 条
  • [11] Gelfand Pairs Involving the Wreath Product of Finite Abelian Groups with Symmetric Groups
    Tout, Omar
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (01): : 91 - 97
  • [12] Gelfand pairs and spherical means on H-type groups
    Yasser, K. T.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04) : 1316 - 1328
  • [13] A PROOF OF THE POLYNOMIAL CONJECTURE FOR NILPOTENT LIE GROUPS MONOMIAL REPRESENTATIONS
    Baklouti, Ali
    Fujiwara, Hidenori
    Ludwig, Jean
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (09) : 6015 - 6032
  • [14] Model-theoretic properties of nilpotent groups and Lie algebras
    d'Elbee, Christian
    Mueller, Isabel
    Ramsey, Nicholas
    Siniora, Daoud
    JOURNAL OF ALGEBRA, 2025, 662 : 640 - 701
  • [15] A PROOF OF THE POLYNOMIAL CONJECTURE FOR RESTRICTIONS OF NILPOTENT LIE GROUPS REPRESENTATIONS
    Baklouti, Ali
    Fujiwara, Hidenori
    Ludwig, Jean
    REPRESENTATION THEORY, 2022, 26 : 616 - 634
  • [16] The Polynomial Conjecture for Restrictions of Some Nilpotent Lie Groups Representations
    Baklouti, Ali
    Fujiwara, Hidenori
    Ludwig, Jean
    JOURNAL OF LIE THEORY, 2019, 29 (02) : 311 - 341
  • [17] Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: rank-one actions on the centre
    Fischer, Veronique
    Ricci, Fulvio
    Yakimova, Oksana
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) : 221 - 255
  • [18] Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: rank-one actions on the centre
    Véronique Fischer
    Fulvio Ricci
    Oksana Yakimova
    Mathematische Zeitschrift, 2012, 271 : 221 - 255
  • [19] Strongly τ-Decomposable and Selfdecomposable Laws on Simply Connected Nilpotent Lie Groups
    Wilfried Hazod
    Hans-Peter Scheffler
    Monatshefte für Mathematik, 1999, 128 : 269 - 282
  • [20] Strongly τ-decomposable and selfdecomposable laws on simply connected nilpotent Lie groups
    Hazod, W
    Scheffler, HP
    MONATSHEFTE FUR MATHEMATIK, 1999, 128 (04): : 269 - 282