Fermi-Dirac and Bose-Einstein functions of negative integer order

被引:0
作者
D. Cvijović
机构
[1] Vinča Institute of Nuclear Sciences,Atomic Physics Laboratory
来源
Theoretical and Mathematical Physics | 2009年 / 161卷
关键词
Fermi-Dirac function; Bose-Einstein function; Fermi-Dirac integral; Bose-Einstein integral; higher-order tangent number; order-; tangent number;
D O I
暂无
中图分类号
学科分类号
摘要
We find simple explicit closed-form formulas for the Fermi-Dirac function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{F}_{ - n} (z) $$\end{document} and Bose-Einstein function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{B}_{ - n} (z) $$\end{document} for arbitrary n ε ℕ. The obtained formulas involve the higher tangent numbers defined by Carlitz and Scoville. We present some examples and direct consequences of applying the main results.
引用
收藏
页码:1663 / 1668
页数:5
相关论文
共 29 条
  • [1] Dingle R. B.(1957)undefined Appl. Sci. Res. B 6 225-239
  • [2] Dingle R. B.(1957)undefined Appl. Sci. Res. B 6 240-244
  • [3] McDougall J.(1938)undefined Phil. Trans. Roy. Soc. London Ser. A 237 67-104
  • [4] Stoner E. C.(1939)undefined Philos. Magazine B 28 257-286
  • [5] Stoner E. C.(1950)undefined Proc. Roy. Soc. London Ser. A 204 396-405
  • [6] Rhodes P.(1964)undefined J. Math. Phys. 5 1150-1152
  • [7] Glasser M. L.(1967)undefined Math. Comput. 21 30-40
  • [8] Cody W. J.(1968)undefined Phys. Lett. A 26 632-633
  • [9] Thacher H. C.(1968)undefined Phys. Lett. A 27 360-361
  • [10] Swenson R. J.(1979)undefined Phys. Lett. A 72 303-305