Calderón’s reproducing formula and uncertainty principle for the continuous wavelet transform associated with the q-Bessel operator

被引:0
作者
Bochra Nefzi
Kamel Brahim
机构
[1] University of Tunis El Manar,Faculty of Sciences of Tunis
来源
Journal of Pseudo-Differential Operators and Applications | 2018年 / 9卷
关键词
-Wavelet; Continuous ; -wavelet transform; -Bessel operator; -Bessel Fourier transform; Calderón’s reproducing formula; Uncertainty principle; Heisenberg–Pauli–Weyl inequality; 33B15; 33D05; 44A20; 42A38; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present some new elements of harmonic analysis related to the q-Bessel Fourier transform introduced earlier in Dhaouadi (Bull Math Anal Appl 5(2):42–60, 2013), Dhaouadi et al. (J Inequal Pure Appl Math 7(5):171, 2006), we define and study the q-wavelet and the continuous q-wavelet transform associated with this harmonic analysis. Thus, some results (Plancherel’s formula, inversion formula, etc.) are established. Next, we prove a Calderón’s formula and an analogue of Heisenberg’s inequality for the continuous q-wavelet transform.
引用
收藏
页码:495 / 522
页数:27
相关论文
共 38 条
[11]  
Bettaibi N(1984)On Hardy’s inequality for symmetric integral transforms and analogous SIAM J. Anal. 15 723-175
[12]  
Bettaieb RH(1991)Positivity of the generalized translation associated with the Invent. Math. 105 157-832
[13]  
Fitouhi A(2016)-Hankel transform J. Math. Anal. Appl. 440 823-203
[14]  
Dhaouadi L(1910)The Q. J. Pure Appl. Math. 41 193-710
[15]  
Fitouhi A(1994) Bessel function J. Math. Anal. Appl. 186 690-221
[16]  
Hamza M(1982)On Heisenberg and uncertainty principles for the J. Geophys. 47 203-194
[17]  
Bouzeffour F(1999)-Dunkl transform Proc. Am. Math. Soc. 127 183-undefined
[18]  
Fitouhi A(undefined)The uncertainty principle: a mathematical survey undefined undefined undefined-undefined
[19]  
Nouri F(undefined)Decomposition of Hardy functions into square integrable wavelets of constant shape undefined undefined undefined-undefined
[20]  
Guesmi S(undefined)Pointwise analysis of Riemann’s “nondifferentiable” function undefined undefined undefined-undefined