Calderón’s reproducing formula and uncertainty principle for the continuous wavelet transform associated with the q-Bessel operator

被引:0
作者
Bochra Nefzi
Kamel Brahim
机构
[1] University of Tunis El Manar,Faculty of Sciences of Tunis
来源
Journal of Pseudo-Differential Operators and Applications | 2018年 / 9卷
关键词
-Wavelet; Continuous ; -wavelet transform; -Bessel operator; -Bessel Fourier transform; Calderón’s reproducing formula; Uncertainty principle; Heisenberg–Pauli–Weyl inequality; 33B15; 33D05; 44A20; 42A38; 42B10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present some new elements of harmonic analysis related to the q-Bessel Fourier transform introduced earlier in Dhaouadi (Bull Math Anal Appl 5(2):42–60, 2013), Dhaouadi et al. (J Inequal Pure Appl Math 7(5):171, 2006), we define and study the q-wavelet and the continuous q-wavelet transform associated with this harmonic analysis. Thus, some results (Plancherel’s formula, inversion formula, etc.) are established. Next, we prove a Calderón’s formula and an analogue of Heisenberg’s inequality for the continuous q-wavelet transform.
引用
收藏
页码:495 / 522
页数:27
相关论文
共 38 条
[1]  
Bettaibi N(2007)Uncertainty principles in Math. Sci. Res. J. 11 590-602
[2]  
Calderón AP(1964)-analogue Fourier analysis Studia Math. 24 113-190
[3]  
Dhaouadi L(2013)Intermediate spaces and interpolation, the complex method Bull. Math. Anal. Appl. 5 42-60
[4]  
Dhaouadi L(2006)On the J. Inequal. Pure Appl. Math. 7 171-72
[5]  
Fitouhi A(2009)-Bessel Fourier transform Expos. Math. 27 55-354
[6]  
El Kamel J(2008)Inequalities in Appl. Math. Comput. 198 346-472
[7]  
Dhaouadi L(2011)-Fourier analysis Constr. Approx. 34 435-166
[8]  
Binous W(2002)Paley-Wiener theorem for the J. Approx. Theory 115 144-10
[9]  
Fitouhi A(2009)-Bessel transform and associated JIPAM J. Inequal. Pure Appl. Math 10 42-238
[10]  
Fitouhi A(1997)-sampling formula J. Fourier Anal. Appl. 3 207-736