Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids

被引:0
作者
Pawel Buchmüller
Christiane Helzel
机构
[1] Ruhr-University Bochum,Department of Mathematics
来源
Journal of Scientific Computing | 2014年 / 61卷
关键词
Weighted essentially non-oscillatory (WENO) schemes; Finite volume methods; High-order methods; Euler equations; 65M06; 65M12; 65M20;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a simple modification of standard weighted essentially non-oscillatory (WENO) finite volume methods for Cartesian grids, which retains the full spatial order of accuracy of the one-dimensional discretization when applied to nonlinear multidimensional systems of conservation laws. We derive formulas, which allow us to compute high-order accurate point values of the conserved quantities at grid cell interfaces. Using those point values, we can compute a high-order flux at the center of a grid cell interface. Finally, we use those point values to compute high-order accurate averaged fluxes at cell interfaces as needed by a finite volume method. The method is described in detail for the two-dimensional Euler equations of gas dynamics. An extension to the three-dimensional case as well as to other nonlinear systems of conservation laws in divergence form is straightforward. Furthermore, similar ideas can be used to improve the accuracy of WENO type methods for hyperbolic systems which are not in divergence form. Several test computations confirm the high-order accuracy for smooth nonlinear problems.
引用
收藏
页码:343 / 368
页数:25
相关论文
共 50 条