A note on comparison principle for p-laplacian evolution type equation

被引:0
作者
P. L. Guidolin
L. Schütz
J. S. Ziebell
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
来源
Journal of Elliptic and Parabolic Equations | 2021年 / 7卷
关键词
Laplacian evolution equation; Comparison principles; Initial value problems for parabolic equations; p-Laplacian; 35B51; 35K30; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide a comparison principle for the weak solutions u(·,t),v(·,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(\cdot ,t),v(\cdot ,t)$$\end{document} of two similar evolution p-Laplacian equations, both with source terms in a divergent and non-divergent form. Once we treat with signal solutions defined in all space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}, for all t in a maximal existence interval [0,T∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T_*)$$\end{document}, the arguments presented here differ from the ones used to prove the comparison principle in bounded domains. We suppose p≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge n$$\end{document}, p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document} and also consider some additional natural assumptions. The initial conditions u(·,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(\cdot ,0)$$\end{document} and v(·,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(\cdot ,0)$$\end{document} are supposed to belong to the space L1(Rn)∩L∞(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(\mathbb {R}^{n}) \cap L^{\infty }(\mathbb {R}^{n})$$\end{document}. An useful proposition to prove the comparison principle will be presented and the contraction of the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} norm of u-v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u-v$$\end{document} for a particular case will be shown.
引用
收藏
页码:65 / 73
页数:8
相关论文
共 50 条
  • [31] Periodic solutions for a generalized p-Laplacian equation
    Yang, Xiaojing
    Kim, Yong-In
    Lo, Kueiming
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 586 - 589
  • [32] On the antimaximum principle for the p-Laplacian and its sublinear perturbations
    Bobkov, Vladimir
    Tanaka, Mieko
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (03):
  • [33] Remarks on the strong maximum principle involving p-Laplacian
    Liu, Xiaojing
    Horiuchi, Toshio
    HIROSHIMA MATHEMATICAL JOURNAL, 2016, 46 (03) : 311 - 331
  • [34] A Strong Maximum Principle for parabolic equations with the p-Laplacian
    Bobkov, Vladimir E.
    Takac, Peter
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (01) : 218 - 230
  • [35] Existence and uniqueness of periodic solutions for a kind of duffing type p-Laplacian equation
    Zhang, Fuxing
    Li, Ya
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) : 985 - 989
  • [36] Global existence and blow-up for wave equation of p-Laplacian type
    Zu, Ge
    Sun, Lili
    Wu, Jiacheng
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [37] Periodic solutions for Lienard type p-Laplacian equation with two deviating arguments
    Wang, Lijuan
    Shao, Jianying
    Meng, Hua
    Xiao, Bing
    Long, Fei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (02) : 751 - 758
  • [38] Remarks on comparison principles for p-Laplacian with extension to (p,q)-Laplacian
    Mohammed, Ahmed
    Vitolo, Antonio
    BULLETIN OF MATHEMATICAL SCIENCES, 2024, 14 (03)
  • [39] Existence and uniqueness of positive periodic solutions for Rayleigh type p-Laplacian equation
    Xiong, Wanmin
    Shao, Hanying
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1343 - 1350
  • [40] New results of periodic solutions for a kind of Duffing type p-Laplacian equation
    Tang, Yi
    Lib, Yaqiong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (02) : 1380 - 1384