A note on comparison principle for p-laplacian evolution type equation

被引:0
|
作者
P. L. Guidolin
L. Schütz
J. S. Ziebell
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
来源
Journal of Elliptic and Parabolic Equations | 2021年 / 7卷
关键词
Laplacian evolution equation; Comparison principles; Initial value problems for parabolic equations; p-Laplacian; 35B51; 35K30; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we provide a comparison principle for the weak solutions u(·,t),v(·,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(\cdot ,t),v(\cdot ,t)$$\end{document} of two similar evolution p-Laplacian equations, both with source terms in a divergent and non-divergent form. Once we treat with signal solutions defined in all space Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document}, for all t in a maximal existence interval [0,T∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,T_*)$$\end{document}, the arguments presented here differ from the ones used to prove the comparison principle in bounded domains. We suppose p≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge n$$\end{document}, p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document} and also consider some additional natural assumptions. The initial conditions u(·,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(\cdot ,0)$$\end{document} and v(·,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(\cdot ,0)$$\end{document} are supposed to belong to the space L1(Rn)∩L∞(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(\mathbb {R}^{n}) \cap L^{\infty }(\mathbb {R}^{n})$$\end{document}. An useful proposition to prove the comparison principle will be presented and the contraction of the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document} norm of u-v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u-v$$\end{document} for a particular case will be shown.
引用
收藏
页码:65 / 73
页数:8
相关论文
共 50 条
  • [1] A note on comparison principle for p-laplacian evolution type equation
    Guidolin, P. L.
    Schutz, L.
    Ziebell, J. S.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (01) : 65 - 73
  • [2] AN EVOLUTION EQUATION INVOLVING THE NORMALIZED P-LAPLACIAN
    Does, Kerstin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 361 - 396
  • [3] p-Laplacian and Lienard-type equation
    Manasevich, R
    Sedziwy, S
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (02) : 611 - 617
  • [4] On the p-Laplacian evolution equation in metric measure spaces
    Corny, Wojciech
    Mazon, Jose M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (08)
  • [5] A nonlocal p-Laplacian evolution equation with Neumann boundary conditions
    Andreu, F.
    Mazon, J. M.
    Rossi, J. D.
    Toledo, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02): : 201 - 227
  • [6] Higher integrability for a quasilinear parabolic equation of p-Laplacian type
    Yao, Fengping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) : 1265 - 1274
  • [7] Periodic solutions for a kind of Duffing type p-Laplacian equation
    Tang, Mei-Lan
    Liu, Xin-Ge
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) : 1870 - 1875
  • [8] Periodic solutions for a Lienard type p-Laplacian differential equation
    Meng, Hua
    Long, Fei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (02) : 696 - 701
  • [9] Radial solutions for the p-Laplacian equation
    Bachar, Imed
    Ben Othman, Sonia
    Maagli, Habib
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) : 2198 - 2205
  • [10] Weak solutions for p-Laplacian equation
    Bhuvaneswari, Venkatasubramaniam
    Lingeshwaran, Shangerganesh
    Balachandran, Krishnan
    ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) : 319 - 334