Adaptive fused LASSO in grouped quantile regression

被引:9
作者
Ciuperca G. [1 ]
机构
[1] Université Claude Bernard Lyon, Institut Camille Jordan, Villeurbanne
关键词
adaptive fused LASSO; Group selection; oracle properties; quantile regression; selection consistency;
D O I
10.1080/15598608.2016.1258601
中图分类号
学科分类号
摘要
This article considers the quantile model with grouped explanatory variables. In order to have the sparsity of the parameter groups but also the sparsity between two successive groups of variables, we propose and study an adaptive fused group LASSO quantile estimator. The number of variable groups can be fixed or divergent. We find the convergence rate under classical assumptions and we show that the proposed estimator satisfies the oracle properties. © 2017 Grace Scientific Publishing, LLC.
引用
收藏
页码:107 / 125
页数:18
相关论文
共 23 条
[1]  
Beakley K., Vert J.P., The group fused Lasso for multiple change-point detection, arXivpreprint, arXiv:1106.4199v1, (2011)
[2]  
Ciuperca G., Adaptive group LASSO selection in quantile models, Statistical Papers, in press, (2016)
[3]  
Ciuperca G., Adaptive LASSO model selection in a multiphase quantile regression, Statistics, 50, 5, pp. 1100-1131, (2016)
[4]  
Huang J., Breheny P., Ma S., A selective review of group selection in high-dimensional models, Statistical Science, 27, 4, pp. 481-499, (2012)
[5]  
Jang W., Lim J., Lazar N.A., Loh J.M., Yu D., Some properties of generalized fused lasso and its applications to high dimensional data, Journal of the Korean Statistical Society, 44, 3, pp. 352-365, (2015)
[6]  
Jiang L., Wang H.J., Bondell H.D., Interquantile shrinkage in regression models, Journal of Computational and Graphical Statistics, 22, pp. 970-986, (2013)
[7]  
Jiang L., Bondell H.D., Wang H.J., Interquantile shrinkage and variable selection in quantile regression, Computational Statistics and Data Analysis, 69, pp. 208-219, (2014)
[8]  
Koenker R., Quantile regression, (2005)
[9]  
Li Y., Zhu J., Analysis of array CGH data for cancer studies using fused quantile regression, Bioinformatics, 23, 18, pp. 2470-2476, (2007)
[10]  
Sun Y., Wang H.J., Fuentes M., Fused adaptive lasso for spatial and temporal quantile function estimation, Technometrics, 58, 1, pp. 127-137, (2016)