Artificial neural network modeling for the prediction of critical transformation temperatures in steels

被引:0
作者
Carlos Garcia-Mateo
Carlos Capdevila
Francisca Garcia Caballero
Carlos García de Andrés
机构
[1] Consejo Superior de Investigaciones Científicas (CSIC),MATERALIA Research Group, Department of Physical Metallurgy, Centro Nacional de Investigaciones Metalúrgicas (CENIM)
来源
Journal of Materials Science | 2007年 / 42卷
关键词
Martensite; Artificial Neural Network; Bainite; Artificial Neural Network Model; Bayesian Framework;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate knowledge of critical transformation temperatures in steels such as the austenitizing temperature, Tγ, isothermal bainite and martensite start temperatures, BS and MS, is of unquestionable significance from an industrial and research point of view. Therefore a significant amount of work has been devoted not only in understanding the physical mechanism lying beneath those transformations, but also obtaining quantitatively accurate models. Nowadays, with modern computing systems, more rigorous and complex data analysis methods can be applied whenever required. Thus, Artificial Neural Network (ANN) analysis becomes a very attractive alternative, for being easily distributed, self-sufficient and for its ability of accompanying its predictions by an indication of their reliability.
引用
收藏
页码:5391 / 5397
页数:6
相关论文
共 66 条
[1]  
Olson GB(1976)undefined Metall Trans 7A 1897-undefined
[2]  
Cohen M(1999)undefined ISIJ Int 39 966-undefined
[3]  
Bhadeshia HKDH(2002)undefined Mater Sci Technol 18 655-undefined
[4]  
Sourmail T(1992)undefined Neural Comput 4 415-undefined
[5]  
Bhadeshia HKDH(1992)undefined Neural Comput 4 448-undefined
[6]  
Mackay DJC(1965)undefined JISI 203 721-undefined
[7]  
Mackay DJC(1956)undefined JISI 183 349-undefined
[8]  
Mackay DJC(1999)undefined Metall Trans A 30 909-undefined
[9]  
Andrews KW(2003)undefined ISIJ Int 43 1821-undefined
[10]  
Steven W(2002)undefined J Mater Sci Lett 21 1253-undefined