DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation

被引:0
|
作者
Xiaohong Zhao
Rixia Qin
Qilei Zhang
Fei Yu
Qi Wang
Bo He
机构
[1] Ocean University of China,College of Information Science and Engineering
来源
Journal of Ocean University of China | 2021年 / 20卷
关键词
side-scan sonar (SSS); semantic segmentation; dilated convolutions; super-resolution;
D O I
暂无
中图分类号
学科分类号
摘要
In ocean explorations, side-scan sonar (SSS) plays a very important role and can quickly depict seabed topography. Assembling the SSS to an autonomous underwater vehicle (AUV) and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition, which is conducive to submarine detection. However, because of the complexity of the marine environment, various noises in the ocean pollute the sonar image, which also encounters the intensity inhomogeneity problem. In this paper, we propose a novel neural network architecture named dilated convolutional neural network (DcNet) that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation. The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target, respectively. The core of our network is a novel block connection named DCblock, which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy. Furthermore, our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality images. We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets. Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures, the accuracy of our method is still comparable, which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.
引用
收藏
页码:1089 / 1096
页数:7
相关论文
共 50 条
  • [41] GRNet: Deep Convolutional Neural Networks based on Graph Reasoning for Semantic Segmentation
    Wu, Yang
    Jiang, Aimin
    Tang, Yibin
    Kwan, Hon Keung
    2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 116 - 119
  • [42] Semantic segmentation of hyperspectral images using convolutional neural networks and the attention mechanism
    Gribanov, Danil Nikolaevich
    Mukhin, Artem Vladimirovich
    Kilbas, Igor Alexandrovich
    Paringer, Rustam Alexandrovich
    COMPUTER OPTICS, 2024, 48 (06) : 894 - 902
  • [43] A multi-scale strategy for deep semantic segmentation with convolutional neural networks
    Zhao, Bonan
    Zhang, Xiaoshan
    Li, Zheng
    Hu, Xianliang
    NEUROCOMPUTING, 2019, 365 : 273 - 284
  • [44] Multi-scale deep context convolutional neural networks for semantic segmentation
    Quan Zhou
    Wenbing Yang
    Guangwei Gao
    Weihua Ou
    Huimin Lu
    Jie Chen
    Longin Jan Latecki
    World Wide Web, 2019, 22 : 555 - 570
  • [45] SEMANTIC SEGMENTATION OF THE GROWTH STAGES OF PLASMODIUM PARASITES USING CONVOLUTIONAL NEURAL NETWORKS
    Aladago, Maxwell Mbailla
    Torresani, Lorenzo
    Rosca, Elena V.
    2019 IEEE AFRICON, 2019,
  • [46] Joint semantic segmentation of road objects and lanes using Convolutional Neural Networks
    Cabrera Lo Bianco, Leonardo
    Beltran, Jorge
    Fernandez Lopez, Gerardo
    Garcia, Fernando
    Al-Kaff, Abdulla
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 133
  • [47] Enlarging Effective Receptive Field of Convolutional Neural Networks for Better Semantic Segmentation
    Gu, Yifan
    Zhong, Zuofeng
    Wu, Shuai
    Xu, Yong
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 388 - 393
  • [48] Semantic segmentation on small datasets of satellite images using convolutional neural networks
    Younis, Mohammed Chachan
    Keedwell, Edward
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [49] Semantic Face Segmentation Using Convolutional Neural Networks With a Supervised Attention Module
    Hizukuri, Akiyoshi
    Hirata, Yuto
    Nakayama, Ryohei
    IEEE ACCESS, 2023, 11 : 116892 - 116902
  • [50] Traffic Scene Semantic Segmentation by Using Several Deep Convolutional Neural Networks
    Kherraki, Amine
    Maqbool, Muaz
    El Ouazzani, Rajae
    2021 3RD IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (MENACOMM), 2021, : 1 - 6