DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation

被引:0
|
作者
Xiaohong Zhao
Rixia Qin
Qilei Zhang
Fei Yu
Qi Wang
Bo He
机构
[1] Ocean University of China,College of Information Science and Engineering
来源
Journal of Ocean University of China | 2021年 / 20卷
关键词
side-scan sonar (SSS); semantic segmentation; dilated convolutions; super-resolution;
D O I
暂无
中图分类号
学科分类号
摘要
In ocean explorations, side-scan sonar (SSS) plays a very important role and can quickly depict seabed topography. Assembling the SSS to an autonomous underwater vehicle (AUV) and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition, which is conducive to submarine detection. However, because of the complexity of the marine environment, various noises in the ocean pollute the sonar image, which also encounters the intensity inhomogeneity problem. In this paper, we propose a novel neural network architecture named dilated convolutional neural network (DcNet) that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation. The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target, respectively. The core of our network is a novel block connection named DCblock, which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy. Furthermore, our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality images. We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets. Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures, the accuracy of our method is still comparable, which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.
引用
收藏
页码:1089 / 1096
页数:7
相关论文
共 50 条
  • [21] Study on semantic image segmentation based on convolutional neural network
    Li, Lin-Hui
    Qian, Bo
    Lian, Jing
    Zheng, Wei-Na
    Zhou, Ya-Fu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (06) : 3397 - 3404
  • [22] A Universal Automatic Bottom Tracking Method of Side Scan Sonar Data Based on Semantic Segmentation
    Zheng, Gen
    Zhang, Hongmei
    Li, Yuqing
    Zhao, Jianhu
    REMOTE SENSING, 2021, 13 (10)
  • [23] Semantic Segmentation With Light Field Imaging and Convolutional Neural Networks
    Jia, Chen
    Shi, Fan
    Zhao, Meng
    Zhang, Yao
    Cheng, Xu
    Wang, Mianzhao
    Chen, Shengyong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [24] DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORKS
    Schenkel, Fabian
    Middelmann, Wolfgang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 728 - 731
  • [25] Interweave features of Deep Convolutional Neural Networks for semantic segmentation
    Bai, Shuang
    Gu, Wenchao
    Kong, Lingxing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 109
  • [26] Semantic segmentation for prostate cancer grading by convolutional neural networks
    Ing, Nathan
    Ma, Zhaoxuan
    Li, Jiayun
    Salemi, Hootan
    Arnold, Corey
    Knudsen, Beatrice S.
    Gertych, Arkadiusz
    MEDICAL IMAGING 2018: DIGITAL PATHOLOGY, 2018, 10581
  • [27] Semantic Segmentation of Aerial Images With Shuffling Convolutional Neural Networks
    Chen, Kaiqiang
    Fu, Kun
    Yan, Menglong
    Gao, Xin
    Sun, Xian
    Wei, Xin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (02) : 173 - 177
  • [28] Semantic segmentation of mouse jaws using convolutional neural networks
    Cooley, Victoria
    Stock, Stuart R.
    Guise, William
    Verma, Adya
    Wald, Tomas
    Klein, Ophir
    Joester, Derk
    DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
  • [29] CANNET: CONTEXT AWARE NONLOCAL CONVOLUTIONAL NETWORKS FOR SEMANTIC IMAGE SEGMENTATION
    Ran, Lingyan
    Zhang, Yanning
    Hua, Gang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4669 - 4673
  • [30] Semantic Segmentation of Marine Radar Images using Convolutional Neural Networks
    Kim, Keunhwan
    Kim, Jinwhan
    OCEANS 2019 - MARSEILLE, 2019,